Nutriop 长寿博客
释放自噬的力量,实现长寿和长期健康
了解自噬及其好处 “自噬”一词源自希腊语,翻译为“自食”。自噬是一种分解代谢过程,可分解和回收细胞成分,有助于产生新细胞。这种自我调节机制,也称为体内平衡,在维持体内健康平衡方面发挥着至关重要的作用。在自噬过程中,细胞质(细胞核外的一种胶状物质)和称为细胞器的小结构被从细胞中移除并回收。这个过程对于去除不再正常运作的细胞至关重要。自噬的破坏与多种疾病有关,特别是帕金森氏症等神经退行性疾病。 自噬过程的解释 当细胞缺乏足够的营养时,就会触发自噬。该过程由四个阶段组成:1. 碳封存称为吞噬泡的双膜结构包围并包围细胞质和细胞器。然后吞噬细胞转变为一种称为自噬体的细胞器。2. 融合自噬体与内体融合形成两性体,然后能够与溶酶体融合。3. 降解一旦与溶酶体融合,水解酶会分解最初被自噬体包围的物质,从而发生降解。所得结构称为自噬溶酶体或自溶酶体。4. 重复使用完全降解后,氨基酸被释放到细胞液中,并可以被新细胞重复使用。这些氨基酸用于 TCA 循环(也称为柠檬酸循环),这是一系列化学反应,是细胞呼吸的主要驱动力。 NAD+ 是我们最畅销的补充剂之一,在大多数 TCA 循环反应中发挥着至关重要的作用。自噬的不同类型自噬分为三种类型,每种类型都有不同的特征:1. 巨自噬这是指上面概述的一般自噬过程。2. 微自噬该过程还吞噬并降解不同的细胞结构,但在隔离过程中不涉及吞噬细胞。相反,溶酶体直接吞噬细胞内容物,将其分解成氨基酸进行回收。3. 伴侣介导的自噬这种选择性过程以蛋白质为目标进行降解,伴侣蛋白有助于可降解蛋白质沿着溶酶体膜易位。自噬在抗衰老和长寿中的作用自噬是一种应激反应(由细胞饥饿触发),可以使细胞恢复活力,使细胞更加节能、更能抵抗损伤。研究表明,激活自噬可以抑制与年龄相关的细胞缺陷的积累,从而显着提高目标细胞的代谢效率。自噬还可以针对功能障碍的线粒体,产生有害的活性氧 (ROS),从而导致细胞降解——这一过程称为线粒体自噬。研究表明,诱导自噬可以延长小鼠的寿命。自噬的额外好处除了抗衰老之外,自噬在预防与年龄相关的疾病方面也发挥着关键作用。它可以去除与阿尔茨海默病和帕金森病等神经退行性疾病相关的有毒蛋白质。自噬还可以通过将损坏的细胞结构分解为氨基酸来防止故障细胞增殖并形成癌症的基础。尽管还需要更多的研究,但许多医学专业人士认为自噬对于预防和治疗癌症至关重要,因为它可以提高基因组的稳定性。总之,自噬提供了许多已知或推测的好处,包括:- 调节细胞内的线粒体,增强能量产生。- 保护免疫和神经系统。- 预防代谢应激。- 通过促进新细胞生长,尤其是大脑和心脏中的细胞生长,可能预防心脏病和认知能力下降。- 通过恢复肠道内壁来预防克罗恩病等炎症性疾病,从而改善消化功能。- 稳定 DNA 并保护我们的基因。- 可能预防和治疗各种癌症类型,因为它被认为是一种肿瘤抑制剂。- 在不增加能量需求的情况下,通过用新细胞使身体恢复活力来减缓衰老。诱导自噬的方法考虑到抗衰老之外的众多健康益处,您可能想知道如何触发体内的自噬。自噬是一种应激反应,因此不会严重损害身体的轻微应激可能有利于激活自噬。已经确定了几种有助于诱导自噬的日常措施:1.营养 人们发现白藜芦醇及其更有效和生物利用度更高的同类紫檀芪可以诱导自噬。 姜黄中的姜黄素和生姜中的 6-姜烯酚已被证明可以激活自噬。 肉桂中的活性成分也被发现可以引发自噬。 咖啡和绿茶中的活性成分已被证明可以增加小鼠的自噬。2.锻炼运动已被证明可以诱导小鼠周围肌肉和脑组织的自噬。另一项研究表明,体育锻炼可能会引发参与代谢调节的器官(例如肝脏、肾上腺和甲状腺)的自噬。因此,除了其他健康益处外,心血管锻炼还是让细胞承受“健康”压力和自噬的绝佳方法。3.间歇性禁食和热量限制禁食有多种好处,包括降低炎症水平、增强大脑功能和增加 HGH 分泌。这些益处可能不是直接通过禁食实现的,而是作为自噬的副作用实现的。对小鼠的研究表明,可以通过间歇性禁食和热量限制来诱导自噬。因此,频繁的短期禁食可能是对抗神经系统疾病和癌症生长的可行方法。4.充足的睡眠自噬也在睡眠期间被触发。昼夜节律与抗衰老直接相关,控制着我们的睡眠周期,并与自噬有关。研究表明,缺乏快速眼动睡眠可能会对神经元的自噬产生负面影响,导致大脑功能改变。扰乱小鼠模型的睡眠也会扰乱它们的自噬蛋白传输。通过了解自噬的好处并将这些实践融入您的日常生活中,您可以促进长寿和长期健康。支持自噬的补充剂除了上述生活方式的改变外,某些补充剂也可能支持自噬。其中一些补充剂包括:1. NAD+(烟酰胺腺嘌呤二核苷酸)NAD+ 是一种辅酶,在 TCA(柠檬酸)循环(细胞呼吸的一系列化学反应)内的许多反应中发挥着至关重要的作用。通过补充 NAD+,可以帮助维持 TCA 循环的效率,从而支持自噬并延长寿命。2. 小檗碱小檗碱是一种天然化合物,存在于多种植物中,如白毛茛、小檗和俄勒冈葡萄。它已被证明可以激活一种称为 AMP 激活蛋白激酶 (AMPK) 的酶,该酶在诱导自噬中起着至关重要的作用。3.槲皮素槲皮素是一种黄酮类化合物,存在于各种水果、蔬菜和谷物中。它已被证明具有抗炎、抗氧化和抗癌特性。一些研究表明,槲皮素可以帮助诱导自噬,为长寿和整体健康提供潜在益处。4.萝卜硫素萝卜硫素是一种在西兰花、卷心菜和羽衣甘蓝等十字花科蔬菜中发现的化合物。它已被证明可以激活 NRF2...
亚精胺诱导的自噬:揭开老年保护的秘密
介绍衰老是生命中不可避免的一部分,随着年龄的增长,我们的身体会发生各种变化。其中一种变化是细胞功能的逐渐衰退,导致罹患与年龄相关的疾病的风险更高。科学家们一直在研究促进健康衰老和延长寿命的方法,最近的研究强调了一种名为亚精胺的分子在这一过程中的潜力。《自然衰老》杂志发表的一项题为《 亚精胺诱导自噬和抗衰老机制》的研究揭示了亚精胺对自噬和衰老影响的细胞机制。本文将深入研究该研究结果,并讨论其对人类健康和长寿的影响。亚精胺:天然的老年保护剂亚精胺是一种天然存在的多胺,存在于多种食物中,例如大豆、豆类、蘑菇和陈年奶酪。研究表明,亚精胺具有许多健康益处,包括促进自噬,这是一种负责分解和回收受损细胞成分的细胞过程。自噬对于维持细胞健康和功能至关重要,其随着年龄的增长而下降,与年龄相关疾病的风险增加有关。亚精胺刺激自噬的能力使其成为老年保护的有前途的候选者,老年保护是指促进健康衰老和预防与年龄相关的疾病的干预措施。 自噬与衰老自噬是一种高度保守的细胞过程,在维持细胞稳态中发挥着至关重要的作用。它通过去除受损的细胞器、错误折叠的蛋白质和入侵的病原体来发挥质量控制机制的作用。自噬随着年龄的增长而下降,导致受损细胞成分的积累,并导致衰老和与年龄相关的疾病。 亚精胺已被证明可以诱导自噬,这是它被认为是衰老保护剂的原因之一。通过促进自噬,亚精胺可能有助于抵消衰老的负面影响并改善整体健康。 亚精胺诱导自噬的机制Madeo 等人的研究全面概述了亚精胺诱导自噬的分子机制。作者描述了亚精胺发挥其自噬诱导作用的几种途径: 1.抑制乙酰转移酶:亚精胺抑制一组称为乙酰转移酶的酶,从而导致自噬的激活。这种作用主要归因于对EP300的抑制,EP300是一种参与自噬调节的特定乙酰转移酶。 2.激活脱乙酰酶:亚精胺还会激活一组称为脱乙酰酶的酶,特别是 sirtuin 1 (SIRT1),已知它可以促进自噬。 SIRT1 激活增强自噬相关蛋白的脱乙酰化,导致自噬激活。 3.转录因子的调节:亚精胺调节多种转录因子,例如转录因子EB (TFEB)和叉头盒O3 (FOXO3)蛋白,它们调节表达自噬相关基因。 4.诱导线粒体功能和生物发生:亚精胺促进线粒体功能和生物发生,这对于维持细胞能量稳态和防止受损线粒体的积累至关重要。导致衰老的因素。 5.细胞应激反应的调节:亚精胺参与多种应激反应的调节,包括未折叠蛋白反应 (UPR)、热休克反应和氧化应激反应。通过调节这些应激反应,亚精胺增强细胞弹性并促进自噬。《自然衰老》杂志上的这项研究旨在揭示亚精胺对自噬和抗衰老作用背后的细胞机制。研究人员结合了遗传、生物化学和细胞方法来研究亚精胺如何调节自噬并促进健康衰老。他们发现亚精胺的衰老保护作用主要是通过激活一种名为 EP300 的蛋白质来介导的,EP300 是自噬的重要调节因子。 EP300 激活一种名为 TFEB 的转录因子,进而促进参与自噬和溶酶体功能的基因的表达。研究还发现,亚精胺诱导的 EP300 激活依赖于其结合和抑制另一种名为 SIRT1 的蛋白质的能力,SIRT1 是一种众所周知的衰老和寿命调节因子。亚精胺对 SIRT1 的抑制会导致 EP300 活性增加,从而增强自噬和细胞健康。值得注意的是,研究人员证明,在缺乏 EP300 或 SIRT1 的细胞中,亚精胺的老年保护作用显着降低,凸显了这些蛋白质在亚精胺作用中的重要性。对人类健康和长寿的影响这项研究的结果对人类健康和寿命有几个重要的影响。通过揭示亚精胺诱导的自噬和衰老保护的分子机制,该研究为促进健康衰老和预防与年龄相关的疾病的潜在策略提供了宝贵的见解。首先,该研究强调了自噬及其通过EP300和SIRT1的调节在维持细胞健康中的重要性。更好地了解这些过程可能会导致开发新的治疗干预措施,以增强自噬并改善老龄化人群的健康结果。其次,该研究强调了补充亚精胺对于促进健康衰老的潜在益处。由于亚精胺是一种天然存在于各种食物中的化合物,因此增加其饮食摄入量可能是利用其老年保护作用的实用且非侵入性的方法。需要在人体中进行进一步的临床试验,以确定补充亚精胺用于老年保护的最佳剂量、安全性和功效。最后,该研究为衰老和老年保护领域的研究开辟了新途径。研究亚精胺、EP300 和 SIRT1 之间的相互作用以及它们在自噬和细胞健康中的作用,可以揭示促进长寿和健康衰老的干预措施的其他目标。通过阐明 EP300 和 SIRT1 在亚精胺诱导的自噬中的作用,这项研究为未来针对这些蛋白质及其相关途径的研究和潜在治疗干预铺平了道路。 结论随着全球人口持续老龄化,制定有效策略来促进健康老龄化和预防与年龄相关的疾病变得越来越重要。亚精胺增强自噬和促进老年保护的能力为应对这一挑战提供了一条有希望的途径。虽然还需要进行更多的研究来充分了解亚精胺、EP300 和...
释放 NMN 的潜力:NAD+ 的关键
烟酰胺单核苷酸(NMN)是一种分子,近年来作为一种潜在的抗衰老补充剂在科学界和公众中受到了广泛的关注。这是因为 NMN 已被证明可以激活体内已有的另一种分子,即烟酰胺腺嘌呤二核苷酸 (NAD+),这种化合物在能量代谢和衰老过程中发挥着关键作用。让我们仔细看看 NMN 背后的科学原理,为什么它被认为是一种科学上可靠且稳定的 NAD+ 激活剂,以及为什么随着年龄的增长,保持足够水平的这种分子如此重要。 NAD+——终极辅酶 首先,了解 NAD+ 是什么以及它为何重要非常重要。 NAD+ 是一种存在于体内所有活细胞中的辅酶,参与多种代谢反应。您可以将辅酶视为辅助分子,帮助细胞执行各种重要功能。 NAD+ 最重要的作用之一是细胞的能量代谢,即将您吃的食物转化为细胞可以使用的能量的过程。 NAD+ 与细胞内的酶协同作用,帮助分解食物并将其转化为能量。 NAD+ 产生能量的方式之一是充当转运分子(某种穿梭机),将高能电子运输到细胞中的线粒体。线粒体是微小的细胞内细胞器,通常被称为细胞的动力室。一旦被传输,这些电子就会被用来为细胞产生 ATP(三磷酸腺苷)形式的能量。 这个过程对于保持身体平稳运转至关重要,因为如果没有足够的 NAD+,您的细胞就无法产生足够的能量,从而导致疲劳和许多其他问题。 NAD+ 还具有另一个重要作用,即一种强大的抗氧化剂,有助于保护您的细胞免受自由基等有害分子造成的损害,自由基是正常新陈代谢的副产品,也可能来自暴露于 X 射线等物质,吸烟、空气污染、工业化学品和臭氧。 NMN - NAD+ 的前体 这就是NMN的用武之地。NMN是NAD+的前体,这意味着它可以在体内转化为NAD+。这一点很重要,因为随着年龄的增长,您的身体产生的 NAD+ 会减少,这会导致能量代谢下降并增加患年龄相关疾病的风险。一旦到了中年,您的 NAD+ 水平大约是年轻时的一半。事实上,一些科学家将衰老本身描述为一种级联故障,是由人体 NAD+ 产量减少引发的,导致易受影响的组织和器官出现问题。 动物研究也显示 NMN 具有抗衰老作用。例如,研究表明,与未补充 NMN...
亚精胺及其对人类健康和福祉的影响
1677 年,安东尼·范·列文虎克 (Antony Van Leeuwenhoek),一位受过中等教育的荷兰人,也是一位谦逊的纺织企业主,通过精心制作的高倍显微镜镜头进行观察,并得到了惊人的发现。出于无尽的好奇,列文虎克已经利用他自制的镜头做出了许多突破性的发现,包括单细胞动物和植物以及细菌的存在。 但在 1678 年的这一天,在同事的敦促下,他相当不情愿地决定将自己的精液样本放在镜头下,并惊讶地看到微小的、蠕动的“动物”(他称之为“动物”)在他的注视下游动。一年后,即 1679 年,列文虎克发现精液中存在微观晶体。 但直到 1888 年,这些晶体才被命名为“精胺”,直到 1926 年,正确的化学结构才被确定,这种化合物和其他类似的化合物(称为多胺)才从微生物、动物中分离出来。器官、植物。在化学上,聚胺是一组结构中具有两个或多个氨基的小分子。 亚精胺与所有多胺一样,对细胞分裂和生长很重要。这些化合物刚刚开始展现其多重功效,亚精胺成为衰老、认知能力下降、糖尿病、癌症等新疗法和预防药物前沿的明星。 让我们仔细看看亚精胺影响人类健康的具体方式。然后我们将了解哪些食物含有亚精胺,仅靠饮食无法为您提供足够的这种重要化合物,尤其是随着年龄的增长,然后在考虑补充亚精胺时应注意什么。 由于亚精胺对许多不同的健康状况具有积极影响,因此我们期望找到一些可能解释这一点的潜在生物学途径。目前的研究指出亚精胺似乎在许多领域发挥其强大作用的三种主要方式:自噬、抗炎作用以及作为热量限制模拟分子...... 亚精胺与自噬 首先,我们来了解一下自噬。该术语本身源自古希腊语αὐτόφαγος autóphagos。第一个“autó”表示“自我”,“phagos”表示“吃”。从字面上看,这个词的意思是“自食”。当身体细胞度过其生命周期时,它们会积累细胞碎片,包括陈旧的、受损的、畸形的或其他异常的蛋白质。自噬是一种自然发生的有序过程,可以清除这些受损或功能失调的成分。 尽管已经确定了四种不同形式的自噬,但研究最多和理解最多的类型是巨自噬,其中受损的细胞成分被分离出来,然后被细胞内称为自噬体的双膜囊泡隔离。自噬体收集受损成分后,会与可用的溶酶体融合,溶酶体是细胞内的一种膜结合细胞器,含有水解酶,可以分解许多不同种类的生物分子。自噬的减少与许多与衰老相关的疾病有关。自噬是细胞关键部分再生的最重要机制,因此具有巨大的抗衰老潜力,有可能延缓与年龄相关的疾病和死亡。 亚精胺是一种自噬激活剂,主要通过抑制一组称为乙酰转移酶的酶来发挥作用。这些酶,特别是组蛋白乙酰转移酶,被称为“表观基因组的主力”,在实际基因表达的表观遗传调控中发挥着非常重要的作用。 亚精胺作为抗炎药 随着衰老,慢性炎症似乎不可避免地增加。包括亚精胺在内的多胺水平在炎症期间增加,并刺激抗炎细胞因子的产生,同时减少促炎细胞因子的产生。细胞因子是在免疫反应中活跃的小蛋白质,并发出细胞运动至炎症、感染或创伤部位的信号。最近的研究表明,亚精胺还可以增强巨噬细胞的抗炎特性,巨噬细胞是一种专门的免疫细胞,可以检测和消灭细菌和其他有害生物。 亚精胺作为卡路里限制模拟物 热量限制和各种禁食方案是极少数经过验证的生活方式干预措施,可以明确延长许多生物体的寿命并改善健康,包括啮齿类动物模型以及非人类灵长类动物。但尽管间歇性禁食在过去几年中在许多健康和保健圈子中变得流行,但绝大多数人不愿意或无法彻底改变他们的饮食方式,尤其是在很长一段时间内。模拟热量限制效应的化合物(称为热量限制模拟物或 CRM)是很有吸引力的策略。亚精胺绝对符合 CRM 的定义,并且正在成为这一角色的主要竞争者。尽管禁食和热量限制的许多好处可能归因于自噬的增加,但自噬之外似乎还有其他机制可以解释亚精胺对衰老的积极作用。这些包括亚精胺本身的直接抗氧化作用,以及对精氨酸生物利用度和一氧化氮产生的代谢影响。精氨酸是一种用于蛋白质生物合成的氨基酸,一氧化氮会引起血管舒张,血管内壁肌肉松弛,从而使血管扩张并改善循环。 亚精胺及其在健康和福祉中的作用 现在我们已经研究了亚精胺作为自噬激活剂、抗炎剂和卡路里限制模拟物的作用,让我们更仔细地了解亚精胺对衰老、认知能力下降和癌症的影响,这可以说是最令人烦恼和代价最高的三种健康问题我们作为人类面临的问题。此外,我们还将关注一些研究,该研究表明亚精胺可能成为一种有效的抗病毒药物,甚至可以对抗 SARS-CoV-2 感染。 亚精胺与衰老研究表明,补充亚精胺可以延长许多模型生物的寿命,包括酵母、线虫、果蝇和啮齿动物。最近还有数据表明,增加膳食中亚精胺的供应不仅可以降低人类总体死亡率,还可以降低心血管和癌症相关的死亡人数。 亚精胺与认知SmartAge 是首个关于亚精胺对神经退行性疾病影响的人体试验,是一项由柏林 Charitè Universitätsmedizin 进行的随机、双盲、安慰剂对照研究,该研究于 2018 年启动,当时欧盟裁定第一种富含亚精胺的植物提取物为合法可用。 为期三个月的试验阶段的结果令人印象深刻,其中一组认知能力下降的老年参与者接受了富含亚精胺的植物提取物或安慰剂。在为期三个月的试验开始和结束时,对参与者的记忆力进行了评估。即使试验时间很短,结果也是积极的,服用富含亚精胺提取物的参与者显示出记忆力有所改善,而安慰剂对照组的记忆力没有变化。...