Nutriop 长寿博客
Beyond Antibodies: RING-Bait's Novel Approach to Neurodegenerative Therapies
RING-Bait Technology: A New Hope Imagine a world where neurodegenerative diseases like Alzheimer's and Parkinson's are no longer a life sentence, but a treatable condition. Enter RING-Bait technology: a revolutionary...
Beyond Antibodies: RING-Bait's Novel Approach to Neurodegenerative Therapies
RING-Bait Technology: A New Hope Imagine a world where neurodegenerative diseases like Alzheimer's and Parkinson's are no longer a life sentence, but a treatable condition. Enter RING-Bait technology: a revolutionary...
揭开麦角硫因的面纱:大脑增强动力源
深入了解麦角硫因背后的科学,麦角硫因是一种天然存在的抗氧化剂,对大脑健康具有深远的影响。了解它如何保护神经元、增强记忆力和支持整体认知功能,从而有可能扭转与年龄相关的认知衰退的趋势。
揭开麦角硫因的面纱:大脑增强动力源
深入了解麦角硫因背后的科学,麦角硫因是一种天然存在的抗氧化剂,对大脑健康具有深远的影响。了解它如何保护神经元、增强记忆力和支持整体认知功能,从而有可能扭转与年龄相关的认知衰退的趋势。
正念记忆:永恒的技巧,终生清晰
解开永恒记忆的秘密。探索您的记忆如何像一座不断发展的艺术画廊一样策划体验。潜入你思维的动态图书馆,探索你大脑的无限能力。从短期回忆到持久的编年史,了解记忆的迷人方面。与我们一起踏上大脑庇护所之旅,了解如何让您的记忆保持活力和永恒。探索永恒的甘露,解渴转瞬即逝的日子。您终生清晰的旅程从这里开始。
正念记忆:永恒的技巧,终生清晰
解开永恒记忆的秘密。探索您的记忆如何像一座不断发展的艺术画廊一样策划体验。潜入你思维的动态图书馆,探索你大脑的无限能力。从短期回忆到持久的编年史,了解记忆的迷人方面。与我们一起踏上大脑庇护所之旅,了解如何让您的记忆保持活力和永恒。探索永恒的甘露,解渴转瞬即逝的日子。您终生清晰的旅程从这里开始。
恢复专注力:抗衰老认知能力之旅
大脑与衰老:揭开焦点之谜当我们度过人生的黄金岁月时,我们经常发现自己正在努力应对在众多干扰中保持注意力集中的挑战。曾经被认为是理所当然的集中注意力的能力似乎随着时间的推移而逐渐减弱。但为什么随着年龄的增长,专注力会变成一场艰苦的战斗呢?为了解开这个谜团,让我们从抗衰老的角度对人脑进行一次富有启发性的探索。注意力是我们认知过程的关键,是推理、感知、解决问题甚至行为的基础。它是记忆形成的看门人——如果没有足够的关注,记忆就会从我们的掌握中溜走。注意力可以分为两种类型:被动注意力和主动注意力。被动注意力,或“自下而上”的注意力,是本能的,就像对突然的巨响做出反应一样。然而,主动或“自上而下”的注意力需要有意识的努力,就像在拥挤的公共汽车的喧嚣中读书一样。主动注意力可以进一步分为分散注意力、交替注意力或持续注意力。注意力分散是同时处理多项任务或处理不同信息的精神杂耍行为。交替注意力是在任务之间切换的认知灵活性,而持续注意力是长时间专注于一项任务的耐力。随着年龄的增长,注意力的这些方面可能会受到不同的影响,其中一些变得越来越具有挑战性。我们集中注意力的能力的核心是认知控制或执行功能,它协调我们的大脑资源以实现预期目标。这项功能的大师是我们的前额皮质 (PFC),它位于大脑的额叶。 PFC 是多任务处理的大师,善于确定任务的优先顺序、抑制竞争性想法、灵活地切换任务而不忽视总体目标。前额皮质是六个认知领域的指挥中心:记忆和学习、社交功能、语言、感知、认知和运动技能、注意力和执行功能。这些领域是焦点的支柱,并且随着年龄的增长而变得越来越重要。例如,记忆和学习涉及短期保存信息并记录新信息以供将来使用。另一方面,注意力包括保持对特定对象、行动或思想的关注,管理竞争性需求,以及在必要时转移注意力。PFC 并不是孤立工作的。它与处理感觉输入、指导肌肉运动以及管理记忆、情绪和奖励的各个大脑区域有着错综复杂的联系。它采用两种不同的信息处理方法:自下而上和自上而下。前者由实时外部信息驱动,而后者是有意和有选择性的,帮助大脑优先考虑与我们的目标最相关的任务——这就是专注的本质。大脑的功能超出了前额皮质。我们的大脑是一座繁忙的大都市,拥有超过 1000 亿个神经元,这些神经元在庞大的高速信息网络中相互连接。这种不断建立和重塑神经细胞之间连接的动态过程被称为神经可塑性。这些神经元高速公路是神经递质(大脑的化学信使)的管道。参与选择性注意的关键神经递质是乙酰胆碱和多巴胺,它们在注意力和动机方面发挥着关键作用。去甲肾上腺素也有贡献,尽管其作用尚不清楚。衰老会破坏这些神经递质的平衡和效率,影响我们集中注意力的能力。在喧嚣中增强注意力:抗衰老的视角在我们生活的快节奏世界中,保持敏锐的注意力可能是一项艰巨的任务。随着年龄、生活习惯和日常生活的复杂性,这一挑战可能变得更加明显。然而,了解可能阻碍您认知能力的因素并采取应对策略可以帮助您保持思维敏锐度。以下是您如何通过抗衰老方法来驾驭现代世界,以增强注意力和认知健康。健康习惯和生活方式:认知长寿的支柱1.睡眠的恢复力量:睡眠不仅仅是给你的身体充电,它还可以让你的身体恢复活力。它在各种大脑功能中发挥着关键作用,包括记忆巩固、情绪调节和注意力控制。缺乏优质睡眠会损害您的注意力并减慢您的反应速度。此外,高强度学习和高度注意力的时期需要深度睡眠来加强新形成的神经连接。为了延长您的认知寿命,请优先考虑定期获得高质量的睡眠。2.数字干扰:一把双刃剑:虽然数字设备已成为我们生活中不可或缺的一部分,但它们也会扰乱我们的注意力网络。通知、引人入胜的应用程序和社交媒体会分散我们的注意力并降低我们的效率。此外,屏幕发出的蓝光会干扰我们的睡眠模式,进一步影响我们的认知健康。管理您的数字消费以保持您的注意力和认知活力至关重要。3.多任务神话:与普遍的看法相反,多任务会耗尽你的认知资源,而不是提高你的工作效率。我们的大脑不是同时处理多个任务,而是在任务之间快速切换焦点,消耗更多的认知资源并减少我们的工作记忆。优先关注单一任务而不是同时处理多项任务可以显着延长您的认知寿命。4. 酒精和药物滥用: 认知障碍:酒精和非法药物会破坏认知控制,导致依赖性,注意力会转移到获取物质上。 长期使用会改变与记忆和决策有关的大脑区域,对认知老化构成严重威胁。适度和负责任的使用是保持认知健康的关键。5.压力和注意力:复杂的关系:慢性压力会收缩前额皮质并破坏其功能,降低您的注意力集中能力并影响您的工作记忆。然而,有效的压力管理技术,如优质睡眠、定期锻炼、数字调节和正念练习,既可以减轻压力,又可以增强注意力,为更好的认知衰老铺平道路。请记住,衰老并不意味着放弃您的认知能力。通过识别障碍并战略性地改变生活方式,您可以增强注意力并滋养您的大脑。除了这些生活方式的改变之外,将正确的补充剂纳入您的日常生活中还可以进一步增强您的认知健康。Nutriop Longevity提供一系列旨在支持认知健康和抗衰老的补充剂。例如, Nutriop® Ergo Supreme是一种支持大脑健康和认知功能的生物发酵补充剂。含有 NADH、PQQ 和 CoQ10 的Nutriop® Life是增强认知健康和能量产生的另一个绝佳选择。对于那些对白藜芦醇的益处感兴趣的人, Nutriop Longevity® Resveratrol Plus和Nutriop® Resveratrol提供了白藜芦醇与其他有益化合物(如槲皮素、非瑟黄素、姜黄素和胡椒碱)的强效组合。Nutriop Longevity® Berberine HCL含有纯有机胡椒碱和葡萄籽提取物,是一种支持代谢健康的强效补充剂,而Pterostilbene Extreme含有 100% 纯有机葡萄籽提取物,是一种促进大脑健康的强效抗氧化剂。Nutriop®...
恢复专注力:抗衰老认知能力之旅
大脑与衰老:揭开焦点之谜当我们度过人生的黄金岁月时,我们经常发现自己正在努力应对在众多干扰中保持注意力集中的挑战。曾经被认为是理所当然的集中注意力的能力似乎随着时间的推移而逐渐减弱。但为什么随着年龄的增长,专注力会变成一场艰苦的战斗呢?为了解开这个谜团,让我们从抗衰老的角度对人脑进行一次富有启发性的探索。注意力是我们认知过程的关键,是推理、感知、解决问题甚至行为的基础。它是记忆形成的看门人——如果没有足够的关注,记忆就会从我们的掌握中溜走。注意力可以分为两种类型:被动注意力和主动注意力。被动注意力,或“自下而上”的注意力,是本能的,就像对突然的巨响做出反应一样。然而,主动或“自上而下”的注意力需要有意识的努力,就像在拥挤的公共汽车的喧嚣中读书一样。主动注意力可以进一步分为分散注意力、交替注意力或持续注意力。注意力分散是同时处理多项任务或处理不同信息的精神杂耍行为。交替注意力是在任务之间切换的认知灵活性,而持续注意力是长时间专注于一项任务的耐力。随着年龄的增长,注意力的这些方面可能会受到不同的影响,其中一些变得越来越具有挑战性。我们集中注意力的能力的核心是认知控制或执行功能,它协调我们的大脑资源以实现预期目标。这项功能的大师是我们的前额皮质 (PFC),它位于大脑的额叶。 PFC 是多任务处理的大师,善于确定任务的优先顺序、抑制竞争性想法、灵活地切换任务而不忽视总体目标。前额皮质是六个认知领域的指挥中心:记忆和学习、社交功能、语言、感知、认知和运动技能、注意力和执行功能。这些领域是焦点的支柱,并且随着年龄的增长而变得越来越重要。例如,记忆和学习涉及短期保存信息并记录新信息以供将来使用。另一方面,注意力包括保持对特定对象、行动或思想的关注,管理竞争性需求,以及在必要时转移注意力。PFC 并不是孤立工作的。它与处理感觉输入、指导肌肉运动以及管理记忆、情绪和奖励的各个大脑区域有着错综复杂的联系。它采用两种不同的信息处理方法:自下而上和自上而下。前者由实时外部信息驱动,而后者是有意和有选择性的,帮助大脑优先考虑与我们的目标最相关的任务——这就是专注的本质。大脑的功能超出了前额皮质。我们的大脑是一座繁忙的大都市,拥有超过 1000 亿个神经元,这些神经元在庞大的高速信息网络中相互连接。这种不断建立和重塑神经细胞之间连接的动态过程被称为神经可塑性。这些神经元高速公路是神经递质(大脑的化学信使)的管道。参与选择性注意的关键神经递质是乙酰胆碱和多巴胺,它们在注意力和动机方面发挥着关键作用。去甲肾上腺素也有贡献,尽管其作用尚不清楚。衰老会破坏这些神经递质的平衡和效率,影响我们集中注意力的能力。在喧嚣中增强注意力:抗衰老的视角在我们生活的快节奏世界中,保持敏锐的注意力可能是一项艰巨的任务。随着年龄、生活习惯和日常生活的复杂性,这一挑战可能变得更加明显。然而,了解可能阻碍您认知能力的因素并采取应对策略可以帮助您保持思维敏锐度。以下是您如何通过抗衰老方法来驾驭现代世界,以增强注意力和认知健康。健康习惯和生活方式:认知长寿的支柱1.睡眠的恢复力量:睡眠不仅仅是给你的身体充电,它还可以让你的身体恢复活力。它在各种大脑功能中发挥着关键作用,包括记忆巩固、情绪调节和注意力控制。缺乏优质睡眠会损害您的注意力并减慢您的反应速度。此外,高强度学习和高度注意力的时期需要深度睡眠来加强新形成的神经连接。为了延长您的认知寿命,请优先考虑定期获得高质量的睡眠。2.数字干扰:一把双刃剑:虽然数字设备已成为我们生活中不可或缺的一部分,但它们也会扰乱我们的注意力网络。通知、引人入胜的应用程序和社交媒体会分散我们的注意力并降低我们的效率。此外,屏幕发出的蓝光会干扰我们的睡眠模式,进一步影响我们的认知健康。管理您的数字消费以保持您的注意力和认知活力至关重要。3.多任务神话:与普遍的看法相反,多任务会耗尽你的认知资源,而不是提高你的工作效率。我们的大脑不是同时处理多个任务,而是在任务之间快速切换焦点,消耗更多的认知资源并减少我们的工作记忆。优先关注单一任务而不是同时处理多项任务可以显着延长您的认知寿命。4. 酒精和药物滥用: 认知障碍:酒精和非法药物会破坏认知控制,导致依赖性,注意力会转移到获取物质上。 长期使用会改变与记忆和决策有关的大脑区域,对认知老化构成严重威胁。适度和负责任的使用是保持认知健康的关键。5.压力和注意力:复杂的关系:慢性压力会收缩前额皮质并破坏其功能,降低您的注意力集中能力并影响您的工作记忆。然而,有效的压力管理技术,如优质睡眠、定期锻炼、数字调节和正念练习,既可以减轻压力,又可以增强注意力,为更好的认知衰老铺平道路。请记住,衰老并不意味着放弃您的认知能力。通过识别障碍并战略性地改变生活方式,您可以增强注意力并滋养您的大脑。除了这些生活方式的改变之外,将正确的补充剂纳入您的日常生活中还可以进一步增强您的认知健康。Nutriop Longevity提供一系列旨在支持认知健康和抗衰老的补充剂。例如, Nutriop® Ergo Supreme是一种支持大脑健康和认知功能的生物发酵补充剂。含有 NADH、PQQ 和 CoQ10 的Nutriop® Life是增强认知健康和能量产生的另一个绝佳选择。对于那些对白藜芦醇的益处感兴趣的人, Nutriop Longevity® Resveratrol Plus和Nutriop® Resveratrol提供了白藜芦醇与其他有益化合物(如槲皮素、非瑟黄素、姜黄素和胡椒碱)的强效组合。Nutriop Longevity® Berberine HCL含有纯有机胡椒碱和葡萄籽提取物,是一种支持代谢健康的强效补充剂,而Pterostilbene Extreme含有 100% 纯有机葡萄籽提取物,是一种促进大脑健康的强效抗氧化剂。Nutriop®...
表观遗传年龄加速及其与老年女性健康长寿的联系
介绍随着世界人口老龄化,了解促进健康老龄化的因素变得越来越重要。引起关注的一个研究领域是表观遗传年龄加速(EAA)的研究。 EAA 是指一个人的生物年龄(通过 DNA 的特定变化来衡量)与其实际年龄之间的差异。这种差异可以让我们深入了解一个人的整体健康状况以及患年龄相关疾病的可能性。最近的一项研究调查了老年女性EAA 与健康长寿之间的关系,这使其成为第一个探索这种关系的研究。研究概述该研究涉及 1,813 名 70 岁及以上的女性,她们是女性健康倡议 (WHI) 的一部分。 WHI 是一项始于 1993 年的长期研究,旨在确定预防绝经后女性心脏病、骨质疏松症、乳腺癌和结直肠癌的策略。根据健康状况,参与者被分为三组:健康长寿者(活到 90 岁,活动能力和认知功能完好)、活到 90 岁但行动能力和认知功能完好的人,以及未能幸存的人到90岁。表观遗传年龄测量EAA 是使用四个已建立的表观遗传时钟来测量的,该时钟根据基因组中特定位点的 DNA 甲基化水平来估计生物年龄。这些时钟包括 Horvath pantissue、Hannum、Pheno 和 Grim 时钟。 DNA甲基化是参与基因表达和剪接的重要表观遗传机制,这些时钟可以为了解一个人的生物年龄和健康状况提供有价值的见解。 ...
表观遗传年龄加速及其与老年女性健康长寿的联系
介绍随着世界人口老龄化,了解促进健康老龄化的因素变得越来越重要。引起关注的一个研究领域是表观遗传年龄加速(EAA)的研究。 EAA 是指一个人的生物年龄(通过 DNA 的特定变化来衡量)与其实际年龄之间的差异。这种差异可以让我们深入了解一个人的整体健康状况以及患年龄相关疾病的可能性。最近的一项研究调查了老年女性EAA 与健康长寿之间的关系,这使其成为第一个探索这种关系的研究。研究概述该研究涉及 1,813 名 70 岁及以上的女性,她们是女性健康倡议 (WHI) 的一部分。 WHI 是一项始于 1993 年的长期研究,旨在确定预防绝经后女性心脏病、骨质疏松症、乳腺癌和结直肠癌的策略。根据健康状况,参与者被分为三组:健康长寿者(活到 90 岁,活动能力和认知功能完好)、活到 90 岁但行动能力和认知功能完好的人,以及未能幸存的人到90岁。表观遗传年龄测量EAA 是使用四个已建立的表观遗传时钟来测量的,该时钟根据基因组中特定位点的 DNA 甲基化水平来估计生物年龄。这些时钟包括 Horvath pantissue、Hannum、Pheno 和 Grim 时钟。 DNA甲基化是参与基因表达和剪接的重要表观遗传机制,这些时钟可以为了解一个人的生物年龄和健康状况提供有价值的见解。 ...
麦角硫因:一种有前途的生物标志物,将健康意识饮食模式与降低心血管代谢疾病风险和死亡率联系起来
本文讨论了一项基于人群的前瞻性研究,该研究旨在通过长期随访确定与健康饮食模式 ( HCFP ) 相关的血浆代谢物,以及降低心脏代谢发病率和死亡率。研究发现,氨基酸麦角硫因水平的升高与HCFP以及未来冠状动脉疾病( CAD )、心血管和全因死亡风险的降低密切相关。这些发现表明了将饮食与心脏代谢健康联系起来的新途径。 一些与HCFP相关的代谢物此前已与自我报告的特定食物组或项目的摄入量相关。 麦角硫因存在于许多饮食来源中,蘑菇、豆豉和大蒜中的含量特别高。此前人们认为它与蔬菜、海鲜的摄入量较高、固体脂肪和添加糖的摄入量较低以及健康的饮食模式有关。这与关于麦角硫因、蔬菜、海鲜摄入量和HCFP之间关系的研究结果一致。 脯氨酸甜菜碱(又名水苏碱)和甲基脯氨酸都是柑橘类水果摄入量的已知生物标记物,这可以解释本研究中它们与水果摄入量之间的关联。乙酰鸟氨酸与较高的蔬菜摄入量有关,本研究也证实了这一点。泛酸(又名维生素 B5)广泛分布于所有食物组中。相反,尿胆素在本研究中与HCFP显示出负相关性,而之前并未发现其与任何饮食摄入量存在关联。代谢物水平与食物组之间的相关性不大,但麦角硫因与食物组之间的相关系数与之前报告的值相似。尽管马尔默饮食与癌症 (MDC) 研究采用了广泛的饮食抽样方法,但测量不准确性可能会削弱观察到的相关性。 麦角硫因与HCFP具有最强关联,并且与心脏代谢发病率和死亡率具有最明显的保护性关联,独立于传统的风险因素。结果表明,麦角硫因是健康饮食摄入和未来心脏代谢疾病低风险的生物标志物。 麦角硫因已被证明可以保护啮齿动物免受缺血再灌注损伤,并且还被认为是一种对人体具有潜在有益作用的抗氧化剂。 麦角硫因 与其他建议的抗氧化剂不同,它具有一种被认为在炎症区域上调的特定转运蛋白,提供麦角硫因,具有更受控制的抗氧化功能的潜力。 拥有较高水平的麦角硫因 可以以反应的方式防止氧化应激,这被认为是心血管疾病(CVD)发病机制的一个重要因素强>)并可以解释研究结果。 最近在健康人体中进行的一项研究表明,口服麦角硫因可以增加循环麦角硫因的水平,并降低一些氧化损伤生物标志物的水平。需要采用随机治疗方案设计的干预试验来研究这种潜在的抗氧化作用是否可以降低心脏代谢疾病的风险。麦角硫因与酒精摄入量之间的正相关性先前已被证明,这种关联可以通过酒精饮料中存在的麦角硫因或酒精改变麦角硫因的吸收效率来解释存在于其他饮食来源中。 总之,这项研究发现,较高水平的麦角硫因与较低的心脏代谢疾病和死亡风险相关,这表明特定的健康饮食可能通过影响特定的代谢途径和机制来影响这些结果。 麦角硫因与HCFP以及未来CAD 、心血管和全因死亡风险较低之间存在强烈而独立的关联,这凸显了了解饮食摄入导致的分子事件及其与疾病和健康结果的关系的重要性。这些知识将通过确定可通过饮食改变的代谢途径和疾病机制来促进未来的干预研究,从而设计出更有效的饮食干预措施来改善心脏代谢健康。 ...
麦角硫因:一种有前途的生物标志物,将健康意识饮食模式与降低心血管代谢疾病风险和死亡率联系起来
本文讨论了一项基于人群的前瞻性研究,该研究旨在通过长期随访确定与健康饮食模式 ( HCFP ) 相关的血浆代谢物,以及降低心脏代谢发病率和死亡率。研究发现,氨基酸麦角硫因水平的升高与HCFP以及未来冠状动脉疾病( CAD )、心血管和全因死亡风险的降低密切相关。这些发现表明了将饮食与心脏代谢健康联系起来的新途径。 一些与HCFP相关的代谢物此前已与自我报告的特定食物组或项目的摄入量相关。 麦角硫因存在于许多饮食来源中,蘑菇、豆豉和大蒜中的含量特别高。此前人们认为它与蔬菜、海鲜的摄入量较高、固体脂肪和添加糖的摄入量较低以及健康的饮食模式有关。这与关于麦角硫因、蔬菜、海鲜摄入量和HCFP之间关系的研究结果一致。 脯氨酸甜菜碱(又名水苏碱)和甲基脯氨酸都是柑橘类水果摄入量的已知生物标记物,这可以解释本研究中它们与水果摄入量之间的关联。乙酰鸟氨酸与较高的蔬菜摄入量有关,本研究也证实了这一点。泛酸(又名维生素 B5)广泛分布于所有食物组中。相反,尿胆素在本研究中与HCFP显示出负相关性,而之前并未发现其与任何饮食摄入量存在关联。代谢物水平与食物组之间的相关性不大,但麦角硫因与食物组之间的相关系数与之前报告的值相似。尽管马尔默饮食与癌症 (MDC) 研究采用了广泛的饮食抽样方法,但测量不准确性可能会削弱观察到的相关性。 麦角硫因与HCFP具有最强关联,并且与心脏代谢发病率和死亡率具有最明显的保护性关联,独立于传统的风险因素。结果表明,麦角硫因是健康饮食摄入和未来心脏代谢疾病低风险的生物标志物。 麦角硫因已被证明可以保护啮齿动物免受缺血再灌注损伤,并且还被认为是一种对人体具有潜在有益作用的抗氧化剂。 麦角硫因 与其他建议的抗氧化剂不同,它具有一种被认为在炎症区域上调的特定转运蛋白,提供麦角硫因,具有更受控制的抗氧化功能的潜力。 拥有较高水平的麦角硫因 可以以反应的方式防止氧化应激,这被认为是心血管疾病(CVD)发病机制的一个重要因素强>)并可以解释研究结果。 最近在健康人体中进行的一项研究表明,口服麦角硫因可以增加循环麦角硫因的水平,并降低一些氧化损伤生物标志物的水平。需要采用随机治疗方案设计的干预试验来研究这种潜在的抗氧化作用是否可以降低心脏代谢疾病的风险。麦角硫因与酒精摄入量之间的正相关性先前已被证明,这种关联可以通过酒精饮料中存在的麦角硫因或酒精改变麦角硫因的吸收效率来解释存在于其他饮食来源中。 总之,这项研究发现,较高水平的麦角硫因与较低的心脏代谢疾病和死亡风险相关,这表明特定的健康饮食可能通过影响特定的代谢途径和机制来影响这些结果。 麦角硫因与HCFP以及未来CAD 、心血管和全因死亡风险较低之间存在强烈而独立的关联,这凸显了了解饮食摄入导致的分子事件及其与疾病和健康结果的关系的重要性。这些知识将通过确定可通过饮食改变的代谢途径和疾病机制来促进未来的干预研究,从而设计出更有效的饮食干预措施来改善心脏代谢健康。 ...
麦角硫因在衰老相关疾病中的作用:仔细研究其潜在益处
介绍衰老是一个复杂的过程,会影响我们健康的各个方面,使我们更容易患某些疾病和病症。研究人员一直在研究抗氧化剂和其他化合物在对抗衰老负面影响方面的作用。其中一种化合物麦角硫因 (ERG) 最近因其对衰老相关疾病(如虚弱和痴呆)的潜在益处而受到关注。在本文中,我们将讨论 ERG 在衰老相关疾病中的作用及其可能的治疗应用。什么是麦角硫因(ERG)?麦角硫因 (ERG) 是一种含硫化合物,源自一种称为组氨酸的特定氨基酸。它由某些细菌和真菌合成,存在于各种饮食来源中,包括蘑菇、芸豆和肉类。 ERG 充当抗氧化剂,清除自由基并螯合(结合)导致氧化应激的过渡金属,已知氧化应激在衰老和与年龄相关的疾病中发挥作用。全血、尿液和唾液代谢组学代谢组学是对生物样本(例如血液、尿液和唾液)中的小分子(代谢物)进行研究,以了解生理和病理状况。研究人员一直在使用代谢组学来研究 ERG 和其他化合物在衰老相关疾病中的作用。在人类血液中,ERG 主要存在于红细胞 (RBC) 中,尿液和唾液中的含量要少得多。其他生物体液,如尿液和唾液,也可以提供有关健康的有用信息,因为它们可以轻松无创地收集,并且适合日常观察。 饥饿、ERG 与衰老研究表明,热量限制(CR)或间歇性禁食(IF)可以延长寿命并减少各种生物体的氧化应激。这些益处部分归因于上调抗氧化基因的特定转录因子的激活。裂殖酵母(S. pombe)是研究饥饿对新陈代谢影响的优秀模型生物,因为它与人类细胞有许多相似之处。研究人员观察到,葡萄糖和氮饥饿都会导致粟酒裂殖酵母的 ERG 显着增加。同样,在一项涉及四名年轻、非肥胖人类志愿者禁食 58 小时的小型研究中,研究人员发现,他们血液中的 ERG 和其他抗氧化剂的水平有所增加。这些发现表明,ERG 水平的增加可能是酵母和人类对禁食压力的适应性反应,可能在衰老相关过程中发挥保护作用。 ERG 在衰弱、痴呆和肌肉减少症中的应用虚弱、痴呆和肌肉减少症是常见的与年龄相关的疾病,它们具有共同的临床特征,例如对生命支持的依赖增加。研究人员使用全血代谢组学来研究这些疾病,发现 ERG 水平在虚弱和痴呆症中显着降低,但在肌肉减少症(一种以肌肉质量和功能丧失为特征的疾病)中则没有。此外,ERG 相关化合物中的...
麦角硫因在衰老相关疾病中的作用:仔细研究其潜在益处
介绍衰老是一个复杂的过程,会影响我们健康的各个方面,使我们更容易患某些疾病和病症。研究人员一直在研究抗氧化剂和其他化合物在对抗衰老负面影响方面的作用。其中一种化合物麦角硫因 (ERG) 最近因其对衰老相关疾病(如虚弱和痴呆)的潜在益处而受到关注。在本文中,我们将讨论 ERG 在衰老相关疾病中的作用及其可能的治疗应用。什么是麦角硫因(ERG)?麦角硫因 (ERG) 是一种含硫化合物,源自一种称为组氨酸的特定氨基酸。它由某些细菌和真菌合成,存在于各种饮食来源中,包括蘑菇、芸豆和肉类。 ERG 充当抗氧化剂,清除自由基并螯合(结合)导致氧化应激的过渡金属,已知氧化应激在衰老和与年龄相关的疾病中发挥作用。全血、尿液和唾液代谢组学代谢组学是对生物样本(例如血液、尿液和唾液)中的小分子(代谢物)进行研究,以了解生理和病理状况。研究人员一直在使用代谢组学来研究 ERG 和其他化合物在衰老相关疾病中的作用。在人类血液中,ERG 主要存在于红细胞 (RBC) 中,尿液和唾液中的含量要少得多。其他生物体液,如尿液和唾液,也可以提供有关健康的有用信息,因为它们可以轻松无创地收集,并且适合日常观察。 饥饿、ERG 与衰老研究表明,热量限制(CR)或间歇性禁食(IF)可以延长寿命并减少各种生物体的氧化应激。这些益处部分归因于上调抗氧化基因的特定转录因子的激活。裂殖酵母(S. pombe)是研究饥饿对新陈代谢影响的优秀模型生物,因为它与人类细胞有许多相似之处。研究人员观察到,葡萄糖和氮饥饿都会导致粟酒裂殖酵母的 ERG 显着增加。同样,在一项涉及四名年轻、非肥胖人类志愿者禁食 58 小时的小型研究中,研究人员发现,他们血液中的 ERG 和其他抗氧化剂的水平有所增加。这些发现表明,ERG 水平的增加可能是酵母和人类对禁食压力的适应性反应,可能在衰老相关过程中发挥保护作用。 ERG 在衰弱、痴呆和肌肉减少症中的应用虚弱、痴呆和肌肉减少症是常见的与年龄相关的疾病,它们具有共同的临床特征,例如对生命支持的依赖增加。研究人员使用全血代谢组学来研究这些疾病,发现 ERG 水平在虚弱和痴呆症中显着降低,但在肌肉减少症(一种以肌肉质量和功能丧失为特征的疾病)中则没有。此外,ERG 相关化合物中的...