Nutriop 长寿博客
表观遗传年龄加速及其与老年女性健康长寿的联系
介绍随着世界人口老龄化,了解促进健康老龄化的因素变得越来越重要。引起关注的一个研究领域是表观遗传年龄加速(EAA)的研究。 EAA 是指一个人的生物年龄(通过 DNA 的特定变化来衡量)与其实际年龄之间的差异。这种差异可以让我们深入了解一个人的整体健康状况以及患年龄相关疾病的可能性。最近的一项研究调查了老年女性EAA 与健康长寿之间的关系,这使其成为第一个探索这种关系的研究。研究概述该研究涉及 1,813 名 70 岁及以上的女性,她们是女性健康倡议 (WHI) 的一部分。 WHI 是一项始于 1993 年的长期研究,旨在确定预防绝经后女性心脏病、骨质疏松症、乳腺癌和结直肠癌的策略。根据健康状况,参与者被分为三组:健康长寿者(活到 90 岁,活动能力和认知功能完好)、活到 90 岁但行动能力和认知功能完好的人,以及未能幸存的人到90岁。表观遗传年龄测量EAA 是使用四个已建立的表观遗传时钟来测量的,该时钟根据基因组中特定位点的 DNA 甲基化水平来估计生物年龄。这些时钟包括 Horvath pantissue、Hannum、Pheno 和 Grim 时钟。 DNA甲基化是参与基因表达和剪接的重要表观遗传机制,这些时钟可以为了解一个人的生物年龄和健康状况提供有价值的见解。 研究结果研究发现,通过所有四个时钟测量,EAA 增加与 90 岁以下且活动能力完好的存活率较低相关。当包括完整的认知功能时,结果相似,尽管只有 29 名女性从健康长寿组重新分类到活到 90 岁但活动能力和认知功能不完整的组。有趣的是,该研究还显示,健康长寿的女性更有可能是白人,而不是西班牙裔、大学毕业生、不吸烟者 >,并且身体质量指数 (BMI)在参考范围或超重范围。与其他两组女性相比,她们更有可能定期散步、适量饮酒,并且患有较少的主要慢性病。与之前的研究比较很少有研究探讨 EAA 与健康长寿之间的联系。对来自哥斯达黎加的 48 名长寿尼科亚人和 47 名非尼科亚人进行的一项小型研究发现,两组之间的 EAA 没有显着差异。然而,样本量较小限制了该研究检测更细微差异的能力。其他研究调查了 EAA 与老年人身体和认知功能之间的关联,但没有专门针对长寿个体。这些研究普遍发现,较高的...
麦角硫因:一种有前途的生物标志物,将健康意识饮食模式与降低心血管代谢疾病风险和死亡率联系起来
本文讨论了一项基于人群的前瞻性研究,该研究旨在通过长期随访确定与健康饮食模式 ( HCFP ) 相关的血浆代谢物,以及降低心脏代谢发病率和死亡率。研究发现,氨基酸麦角硫因水平的升高与HCFP以及未来冠状动脉疾病( CAD )、心血管和全因死亡风险的降低密切相关。这些发现表明了将饮食与心脏代谢健康联系起来的新途径。 一些与HCFP相关的代谢物此前已与自我报告的特定食物组或项目的摄入量相关。 麦角硫因存在于许多饮食来源中,蘑菇、豆豉和大蒜中的含量特别高。此前人们认为它与蔬菜、海鲜的摄入量较高、固体脂肪和添加糖的摄入量较低以及健康的饮食模式有关。这与关于麦角硫因、蔬菜、海鲜摄入量和HCFP之间关系的研究结果一致。 脯氨酸甜菜碱(又名水苏碱)和甲基脯氨酸都是柑橘类水果摄入量的已知生物标记物,这可以解释本研究中它们与水果摄入量之间的关联。乙酰鸟氨酸与较高的蔬菜摄入量有关,本研究也证实了这一点。泛酸(又名维生素 B5)广泛分布于所有食物组中。相反,尿胆素在本研究中与HCFP显示出负相关性,而之前并未发现其与任何饮食摄入量存在关联。代谢物水平与食物组之间的相关性不大,但麦角硫因与食物组之间的相关系数与之前报告的值相似。尽管马尔默饮食与癌症 (MDC) 研究采用了广泛的饮食抽样方法,但测量不准确性可能会削弱观察到的相关性。 麦角硫因与HCFP具有最强关联,并且与心脏代谢发病率和死亡率具有最明显的保护性关联,独立于传统的风险因素。结果表明,麦角硫因是健康饮食摄入和未来心脏代谢疾病低风险的生物标志物。 麦角硫因已被证明可以保护啮齿动物免受缺血再灌注损伤,并且还被认为是一种对人体具有潜在有益作用的抗氧化剂。 麦角硫因 与其他建议的抗氧化剂不同,它具有一种被认为在炎症区域上调的特定转运蛋白,提供麦角硫因,具有更受控制的抗氧化功能的潜力。 拥有较高水平的麦角硫因 可以以反应的方式防止氧化应激,这被认为是心血管疾病(CVD)发病机制的一个重要因素强>)并可以解释研究结果。 最近在健康人体中进行的一项研究表明,口服麦角硫因可以增加循环麦角硫因的水平,并降低一些氧化损伤生物标志物的水平。需要采用随机治疗方案设计的干预试验来研究这种潜在的抗氧化作用是否可以降低心脏代谢疾病的风险。麦角硫因与酒精摄入量之间的正相关性先前已被证明,这种关联可以通过酒精饮料中存在的麦角硫因或酒精改变麦角硫因的吸收效率来解释存在于其他饮食来源中。 总之,这项研究发现,较高水平的麦角硫因与较低的心脏代谢疾病和死亡风险相关,这表明特定的健康饮食可能通过影响特定的代谢途径和机制来影响这些结果。 麦角硫因与HCFP以及未来CAD 、心血管和全因死亡风险较低之间存在强烈而独立的关联,这凸显了了解饮食摄入导致的分子事件及其与疾病和健康结果的关系的重要性。这些知识将通过确定可通过饮食改变的代谢途径和疾病机制来促进未来的干预研究,从而设计出更有效的饮食干预措施来改善心脏代谢健康。 参考: 1. Smith E、Ottosson F、Hellstrand S 等人麦角硫因与降低死亡率和心血管疾病风险相关Heart 2020;106:691-697。
麦角硫因在衰老相关疾病中的作用:仔细研究其潜在益处
介绍衰老是一个复杂的过程,会影响我们健康的各个方面,使我们更容易患某些疾病和病症。研究人员一直在研究抗氧化剂和其他化合物在对抗衰老负面影响方面的作用。其中一种化合物麦角硫因 (ERG) 最近因其对衰老相关疾病(如虚弱和痴呆)的潜在益处而受到关注。在本文中,我们将讨论 ERG 在衰老相关疾病中的作用及其可能的治疗应用。什么是麦角硫因(ERG)?麦角硫因 (ERG) 是一种含硫化合物,源自一种称为组氨酸的特定氨基酸。它由某些细菌和真菌合成,存在于各种饮食来源中,包括蘑菇、芸豆和肉类。 ERG 充当抗氧化剂,清除自由基并螯合(结合)导致氧化应激的过渡金属,已知氧化应激在衰老和与年龄相关的疾病中发挥作用。全血、尿液和唾液代谢组学代谢组学是对生物样本(例如血液、尿液和唾液)中的小分子(代谢物)进行研究,以了解生理和病理状况。研究人员一直在使用代谢组学来研究 ERG 和其他化合物在衰老相关疾病中的作用。在人类血液中,ERG 主要存在于红细胞 (RBC) 中,尿液和唾液中的含量要少得多。其他生物体液,如尿液和唾液,也可以提供有关健康的有用信息,因为它们可以轻松无创地收集,并且适合日常观察。 饥饿、ERG 与衰老研究表明,热量限制(CR)或间歇性禁食(IF)可以延长寿命并减少各种生物体的氧化应激。这些益处部分归因于上调抗氧化基因的特定转录因子的激活。裂殖酵母(S. pombe)是研究饥饿对新陈代谢影响的优秀模型生物,因为它与人类细胞有许多相似之处。研究人员观察到,葡萄糖和氮饥饿都会导致粟酒裂殖酵母的 ERG 显着增加。同样,在一项涉及四名年轻、非肥胖人类志愿者禁食 58 小时的小型研究中,研究人员发现,他们血液中的 ERG 和其他抗氧化剂的水平有所增加。这些发现表明,ERG 水平的增加可能是酵母和人类对禁食压力的适应性反应,可能在衰老相关过程中发挥保护作用。 ERG 在衰弱、痴呆和肌肉减少症中的应用虚弱、痴呆和肌肉减少症是常见的与年龄相关的疾病,它们具有共同的临床特征,例如对生命支持的依赖增加。研究人员使用全血代谢组学来研究这些疾病,发现 ERG 水平在虚弱和痴呆症中显着降低,但在肌肉减少症(一种以肌肉质量和功能丧失为特征的疾病)中则没有。此外,ERG 相关化合物中的 S-甲基-ERG 和海西宁在衰弱和痴呆症中也有所减少。这一发现表明 ERG 的摄入或代谢可能在这些情况下受到影响。 ERG(一种有效的抗氧化剂)的减少可能会导致虚弱、痴呆和其他衰老相关事件的进展,因为已知氧化损伤会加速这些疾病。研究人员还分析了尿液和唾液代谢组学,以更全面地了解与衰老相关的疾病。他们发现这些生物液中的 ERG 水平没有表现出与年龄相关的显着差异,这表明需要进一步的研究来了解 ERG 在这些条件下的作用。 ERG 治疗:一种潜在的治疗方法先前的研究表明,ERG 具有抗氧化和抗炎作用,可能有益于治疗多种人类疾病,例如类风湿性关节炎。此外,ERG 补充已被证明可以减轻实验动物模型中的认知障碍和组织氧化损伤。因此,ERG 治疗可能是治疗衰弱和痴呆症的一种有前途的治疗方法。总之,ERG 是一种重要的抗氧化剂,在人类健康和衰老相关疾病中发挥着至关重要的作用。这项研究揭示了 ERG 在虚弱、痴呆和其他衰老相关疾病中的潜在意义。研究发现,虚弱和痴呆患者的 ERG 水平下降,表明这种抗氧化剂的下降可能会导致这些疾病的进展。需要进一步的研究来更好地了解...
亚精胺诱导的自噬:揭开老年保护的秘密
介绍衰老是生命中不可避免的一部分,随着年龄的增长,我们的身体会发生各种变化。其中一种变化是细胞功能的逐渐衰退,导致罹患与年龄相关的疾病的风险更高。科学家们一直在研究促进健康衰老和延长寿命的方法,最近的研究强调了一种名为亚精胺的分子在这一过程中的潜力。《自然衰老》杂志发表的一项题为《 亚精胺诱导自噬和抗衰老机制》的研究揭示了亚精胺对自噬和衰老影响的细胞机制。本文将深入研究该研究结果,并讨论其对人类健康和长寿的影响。亚精胺:天然的老年保护剂亚精胺是一种天然存在的多胺,存在于多种食物中,例如大豆、豆类、蘑菇和陈年奶酪。研究表明,亚精胺具有许多健康益处,包括促进自噬,这是一种负责分解和回收受损细胞成分的细胞过程。自噬对于维持细胞健康和功能至关重要,其随着年龄的增长而下降,与年龄相关疾病的风险增加有关。亚精胺刺激自噬的能力使其成为老年保护的有前途的候选者,老年保护是指促进健康衰老和预防与年龄相关的疾病的干预措施。 自噬与衰老自噬是一种高度保守的细胞过程,在维持细胞稳态中发挥着至关重要的作用。它通过去除受损的细胞器、错误折叠的蛋白质和入侵的病原体来发挥质量控制机制的作用。自噬随着年龄的增长而下降,导致受损细胞成分的积累,并导致衰老和与年龄相关的疾病。 亚精胺已被证明可以诱导自噬,这是它被认为是衰老保护剂的原因之一。通过促进自噬,亚精胺可能有助于抵消衰老的负面影响并改善整体健康。 亚精胺诱导自噬的机制Madeo 等人的研究全面概述了亚精胺诱导自噬的分子机制。作者描述了亚精胺发挥其自噬诱导作用的几种途径: 1.抑制乙酰转移酶:亚精胺抑制一组称为乙酰转移酶的酶,从而导致自噬的激活。这种作用主要归因于对EP300的抑制,EP300是一种参与自噬调节的特定乙酰转移酶。 2.激活脱乙酰酶:亚精胺还会激活一组称为脱乙酰酶的酶,特别是 sirtuin 1 (SIRT1),已知它可以促进自噬。 SIRT1 激活增强自噬相关蛋白的脱乙酰化,导致自噬激活。 3.转录因子的调节:亚精胺调节多种转录因子,例如转录因子EB (TFEB)和叉头盒O3 (FOXO3)蛋白,它们调节表达自噬相关基因。 4.诱导线粒体功能和生物发生:亚精胺促进线粒体功能和生物发生,这对于维持细胞能量稳态和防止受损线粒体的积累至关重要。导致衰老的因素。 5.细胞应激反应的调节:亚精胺参与多种应激反应的调节,包括未折叠蛋白反应 (UPR)、热休克反应和氧化应激反应。通过调节这些应激反应,亚精胺增强细胞弹性并促进自噬。《自然衰老》杂志上的这项研究旨在揭示亚精胺对自噬和抗衰老作用背后的细胞机制。研究人员结合了遗传、生物化学和细胞方法来研究亚精胺如何调节自噬并促进健康衰老。他们发现亚精胺的衰老保护作用主要是通过激活一种名为 EP300 的蛋白质来介导的,EP300 是自噬的重要调节因子。 EP300 激活一种名为 TFEB 的转录因子,进而促进参与自噬和溶酶体功能的基因的表达。研究还发现,亚精胺诱导的 EP300 激活依赖于其结合和抑制另一种名为 SIRT1 的蛋白质的能力,SIRT1 是一种众所周知的衰老和寿命调节因子。亚精胺对 SIRT1 的抑制会导致 EP300 活性增加,从而增强自噬和细胞健康。值得注意的是,研究人员证明,在缺乏 EP300 或 SIRT1 的细胞中,亚精胺的老年保护作用显着降低,凸显了这些蛋白质在亚精胺作用中的重要性。对人类健康和长寿的影响这项研究的结果对人类健康和寿命有几个重要的影响。通过揭示亚精胺诱导的自噬和衰老保护的分子机制,该研究为促进健康衰老和预防与年龄相关的疾病的潜在策略提供了宝贵的见解。首先,该研究强调了自噬及其通过EP300和SIRT1的调节在维持细胞健康中的重要性。更好地了解这些过程可能会导致开发新的治疗干预措施,以增强自噬并改善老龄化人群的健康结果。其次,该研究强调了补充亚精胺对于促进健康衰老的潜在益处。由于亚精胺是一种天然存在于各种食物中的化合物,因此增加其饮食摄入量可能是利用其老年保护作用的实用且非侵入性的方法。需要在人体中进行进一步的临床试验,以确定补充亚精胺用于老年保护的最佳剂量、安全性和功效。最后,该研究为衰老和老年保护领域的研究开辟了新途径。研究亚精胺、EP300 和 SIRT1 之间的相互作用以及它们在自噬和细胞健康中的作用,可以揭示促进长寿和健康衰老的干预措施的其他目标。通过阐明 EP300 和 SIRT1 在亚精胺诱导的自噬中的作用,这项研究为未来针对这些蛋白质及其相关途径的研究和潜在治疗干预铺平了道路。 结论随着全球人口持续老龄化,制定有效策略来促进健康老龄化和预防与年龄相关的疾病变得越来越重要。亚精胺增强自噬和促进老年保护的能力为应对这一挑战提供了一条有希望的途径。虽然还需要进行更多的研究来充分了解亚精胺、EP300 和...
释放 NMN 的潜力:动物研究如何证明其在与年龄相关的疾病中改善视力和听力的能力
随着年龄的增长,我们的身体开始恶化,导致各种与年龄相关的疾病。衰老最常见的情况之一是细胞衰老,这可能导致视力和听力下降。 目前,有一些治疗方法可以帮助减缓这些疾病的进展,但并不总是有效。然而,最近的研究表明,一种称为烟酰胺单核苷酸(NMN)的化合物可能是改善受年龄相关疾病影响的人的视力和听力的关键。NMN 是一种天然存在的化合物,具有神经保护作用,可以改善整体生理功能。 在本文中,我们将探讨 NMN 作为治疗年龄相关疾病的潜力,特别是在改善视力和听力方面。我们还将讨论这些疾病的治疗现状及其局限性。 年龄相关疾病和细胞衰老的背景 与年龄相关的疾病,也称为老年疾病,是一组主要发生在老年人中的疾病。这些疾病是由遗传和环境因素共同引起的,其中最重要的因素是衰老过程本身。 与年龄相关的疾病的主要原因之一是细胞衰老,其特点是细胞逐渐退化及其正常功能的能力下降。影响视力的最常见的年龄相关疾病之一是年龄相关性黄斑变性 (AMD),它是 60 岁以上人群失明的主要原因。 同样,与年龄相关的听力损失也是影响老年人的常见病症。这两种情况都会严重影响一个人的生活质量和独立性。目前,与年龄相关疾病的主要治疗方法集中于减缓病情的进展和控制症状。 然而,这些治疗方法有时有效,并且可能产生多种副作用。此外,还需要更多的治疗方法来真正改善细胞功能并逆转细胞衰老的影响。 NMN 整体生理功能 NMN 是一种天然存在的化合物,具有神经保护作用,可以改善整体生理功能。 它是烟酰胺腺嘌呤二核苷酸 (NAD+) 的前体,而烟酰胺腺嘌呤二核苷酸是一种辅酶,在能量代谢和细胞信号传导中发挥着关键作用。 随着年龄的增长,NAD+ 水平下降,导致细胞功能下降。研究发现 NMN 可以提高 NAD+ 水平,从而改善细胞功能并预防与年龄相关的疾病。最近的一项研究发现,在 12 个月内给小鼠施用 NAD+ 中间体烟酰胺单核苷酸 (NMN) 可有效缓解与年龄相关的生理衰退 (3)。 研究发现,口服 NMN 可以快速在小鼠组织中合成 NAD+,从而抑制与年龄相关的体重增加、增强能量代谢、改善体力活动、改善胰岛素敏感性和血脂状况以及改善眼功能等。 。 该研究表明 NAD+ 中间体,例如 NMN,有可能成为人类有效的抗衰老干预措施。 NMN 改善视力 最近的研究表明,NMN...
释放 NMN 的潜力:NAD+ 的关键
烟酰胺单核苷酸(NMN)是一种分子,近年来作为一种潜在的抗衰老补充剂在科学界和公众中受到了广泛的关注。这是因为 NMN 已被证明可以激活体内已有的另一种分子,即烟酰胺腺嘌呤二核苷酸 (NAD+),这种化合物在能量代谢和衰老过程中发挥着关键作用。让我们仔细看看 NMN 背后的科学原理,为什么它被认为是一种科学上可靠且稳定的 NAD+ 激活剂,以及为什么随着年龄的增长,保持足够水平的这种分子如此重要。 NAD+——终极辅酶 首先,了解 NAD+ 是什么以及它为何重要非常重要。 NAD+ 是一种存在于体内所有活细胞中的辅酶,参与多种代谢反应。您可以将辅酶视为辅助分子,帮助细胞执行各种重要功能。 NAD+ 最重要的作用之一是细胞的能量代谢,即将您吃的食物转化为细胞可以使用的能量的过程。 NAD+ 与细胞内的酶协同作用,帮助分解食物并将其转化为能量。 NAD+ 产生能量的方式之一是充当转运分子(某种穿梭机),将高能电子运输到细胞中的线粒体。线粒体是微小的细胞内细胞器,通常被称为细胞的动力室。一旦被传输,这些电子就会被用来为细胞产生 ATP(三磷酸腺苷)形式的能量。 这个过程对于保持身体平稳运转至关重要,因为如果没有足够的 NAD+,您的细胞就无法产生足够的能量,从而导致疲劳和许多其他问题。 NAD+ 还具有另一个重要作用,即一种强大的抗氧化剂,有助于保护您的细胞免受自由基等有害分子造成的损害,自由基是正常新陈代谢的副产品,也可能来自暴露于 X 射线等物质,吸烟、空气污染、工业化学品和臭氧。 NMN - NAD+ 的前体 这就是NMN的用武之地。NMN是NAD+的前体,这意味着它可以在体内转化为NAD+。这一点很重要,因为随着年龄的增长,您的身体产生的 NAD+ 会减少,这会导致能量代谢下降并增加患年龄相关疾病的风险。一旦到了中年,您的 NAD+ 水平大约是年轻时的一半。事实上,一些科学家将衰老本身描述为一种级联故障,是由人体 NAD+ 产量减少引发的,导致易受影响的组织和器官出现问题。 动物研究也显示 NMN 具有抗衰老作用。例如,研究表明,与未补充 NMN...
另一种神奇蘑菇——麦角硫因如何保护您的大脑
寻找有效的化合物来保护人类大脑免受认知能力下降的破坏,包括决策受损、无法集中注意力、记忆丧失、精神错乱,甚至全面的痴呆症,这一点从未如此紧迫。根据亚特兰大疾病控制中心的数据,美国有1600 万人患有认知障碍。其中510万人患有阿尔茨海默氏症,预计到2050年这一数字将攀升至令人震惊的1320万强>。 全球有 5000 万人患有阿尔茨海默氏症,如果没有突破,这个已经令人震惊的数字可能到 2050 年将超过 1.52 亿。 蘑菇是大脑保护化合物的来源 使用蘑菇影响大脑功能无论如何都不是什么新鲜事,因此研究人员转向真菌王国寻找可以保护大脑免受疾病侵害的化合物也就不足为奇了。大约 1500 年来,土著人民一直使用有意识地改变裸盖菇素“神奇”蘑菇来改善福祉,这一点从早于玛雅人的文化开始。在过去的十年中,约翰·霍普金斯大学牵头的研究表明,裸盖菇素对重度抑郁症患者以及减少癌症患者的焦虑具有显着效果。 像portabellas、蓝牡蛎和大喇叭这样的蘑菇现在可以在杂货店和农贸市场中常见,并且已经成为它们自己的一员。它是健康饮食的一部分,为许多菜肴增添肉味,也是 B 族维生素和矿物质的良好来源。但也许最有趣的是蘑菇中发现的其他化合物——多酚、类胡萝卜素、吲哚和多糖,它们虽然没有营养价值,但具有抗炎、抗氧化和甚至还有抗癌功效。事实上,一些蘑菇,如灵芝、冬虫夏草、白桦茸等,是专门因其药用特性而种植的。 其中一种蘑菇,狮鬃菇,因其烹饪吸引力和作为认知保护剂的承诺而闻名。 松茸蘑菇在北美不太出名,但在日本被视为美味佳肴,因其味道而备受推崇,也被日本贵族作为特殊礼物赠送作为皇室成员,象征着长寿、生育和幸福。 麦角硫因 - 一种有效的蘑菇脑保护剂 两种蘑菇都含有麦角硫因(即“er-go-THIGH-oh-neen”),这是一种水溶性药用生物活性氨基酸,能够进入组织通过人体内天然存在的特定分子转运蛋白对大脑进行运输,具有有效的神经保护作用。麦角硫因仅在非酵母真菌和一些细菌中合成。植物通过土壤中的微生物产生麦角硫因,通过根部吸收麦角硫因,而人类和动物则必须通过饮食获取麦角硫因。尽管其他食物,包括肝脏、红豆、黑豆和燕麦麸都含有麦角硫因,但蘑菇仍然是人类的主要来源。 麦角硫因可以通过多种方式保护您的大脑。同样重要的是要了解麦角硫因还可以保护其他身体组织和系统以及大脑,并且它在包括慢性炎症在内的多种疾病中具有很大的治疗作用疾病、眼睛疾病、肾脏疾病、心血管疾病、紫外线损伤、神经损伤,甚至癌症以及细胞衰老。 麦角硫因具有广泛的抗炎和抗氧化作用,并且似乎与其他抗氧化剂一起保护线粒体免受氧化应激,从而增强线粒体功能。它也是一种清除化合物,通过中和细胞过氧化氢的有害作用,保护神经元免受 β-淀粉样蛋白诱导的细胞毒性。 麦角硫因还促进神经元干细胞的分化,这对于中枢神经系统的发育和维护至关重要。 此外,该化合物还可以阻止对 DNA 以及蛋白质的损伤,减少神经炎症,减少细胞应激,增加细胞保护蛋白的表达,并增加脂氧素的水平,它们是由外周血细胞产生的天然抗炎分子。麦角硫因还具有抗衰老剂的作用,这意味着它可以破坏随着衰老而在组织中积累的老化细胞,并可能减缓衰老的进展与年龄相关的疾病和状况。 补充麦角硫因是关键 因此,鉴于这些多重保护作用,不难预测狮鬃和松茸蘑菇的强大药用效果,因为这些蘑菇的维生素E含量相对较高。 麦角硫因。 狮鬃长期以来因其神经保护特性而闻名,并用于预防与年龄相关的神经退行性疾病,而松茸蘑菇因其抗衰老作用而备受推崇。衰老特性,以及它降低血压和增强神经干细胞增殖的能力。 但要获得最大的治疗效果,每天必须吃十几颗甚至更多的蘑菇!新鲜的狮鬃蘑菇,尤其是松茸蘑菇往往很难找到,而且价格昂贵,并且无法保证麦角硫因的含量> 在每个蘑菇中,因此您无法知道自己是否摄入了足够的量。补充确实是日复一日获得一致、浓缩剂量的麦角硫因的唯一方法。 另外,与通过饮食获取的许多其他化合物类似,麦角硫因的水平随着年龄以及各种疾病的发作而下降。低水平的麦角硫因与轻度认知障碍以及痴呆有关,极低的水平似乎与疾病的严重程度相对应。 Nutriop® 的方法 在 Nutriop® Longevity,我们立即认识到麦角硫因的巨大益处,也了解大多数人在寻找质量麦角硫因时面临的挑战他们可以信任的产品,更不用说购买足够的含有新鲜蘑菇的麦角硫因来满足他们的日常需求。因此,我们开始进行自己的详细研究,并为我们的客户制定最佳、生物利用度最高麦角硫因补充剂。 毫无疑问,并非所有麦角硫因补充剂都是相同的。我们仅使用最高品质的99%生物发酵松茸蘑菇(又名松茸)和狮鬃菇提取物蘑菇(又名猴头菇)作为我们新型先进L-麦角硫因配方生物发酵Nutriop® Ergo-Supreme的基础。我们还添加了所有天然阿魏酸,它是从米糠中提取的,它本身就是一种有效的抗氧化剂。此外,阿魏酸还可以减少氧化应激并改善线粒体生物合成。这种以正确比例组合的组合可以提高我们配方的功效,使其更加强大。大多数其他补充剂仅含有约...
遗传学、长寿和癌症——当前研究发现了令人惊讶的发现
每个人都熟悉不同哺乳动物的体型和寿命差异很大。一只体重不到一盎司的老鼠只能活 12 到 18 个月。雄性大象的体重可达 13,000 磅,平均寿命为 60 至 70 年。蓝鲸使大象相形见绌,体重超过 40 万磅,寿命可达 80 至 90 年。 所有动物,无论大小,以及人类,都会定期获得所谓的体细胞突变,这种突变发生在生物体的整个生命周期中。这些体细胞突变是动物生殖细胞以外的细胞中的遗传变化,人类每年会积累大约 20 到 50 个此类突变。 虽然大多数突变是无害的,但其中一些突变会影响细胞的正常功能,甚至引发细胞癌变。几十年来,研究人员一直相信这些突变一定也在衰老中发挥着作用,但没有技术手段来研究它们。该技术现已到位,使科学家能够观察正常细胞中的这些体细胞突变。 佩托悖论 但除了体细胞突变在衰老中可能发挥的作用之外,研究人员还有另一个关于癌症发展的未解之谜,即皮托悖论。 这个悖论是这样的:癌症是从单细胞发展而来的。因此,较大的动物(例如大象)比较小的动物(例如小鼠)拥有更多的细胞,理论上应该具有更高的癌症风险。 只是他们不这样做。不同动物的癌症发病率完全与其体型无关。科学家推测,不知何故,较大的动物已经进化出了某种机制,这样它们就不会以仅根据其体型所预期的速度患上癌症。可能解释这一点的理论之一是,体型较大的动物细胞中体细胞突变的积累率较低,但到目前为止,这一点还无法得到测试。 在 2022 年 4 月 13 日发表在著名杂志《自然》上的一项新研究中,科学家检查了 16 个不同物种的细胞:黑白疣猴、猫、牛、狗、雪貂、长颈鹿、港湾鼠海豚、马、人类、狮子、老鼠、裸鼹鼠、兔子、老鼠、环尾狐猴和老虎。研究人员发现,尽管不同的动物物种在体型和寿命上存在巨大差异,但当它们到达自然生命的终点时,它们都具有相似数量的体细胞突变。 研究人员还发现了与寿命相关的其他东西,这证实了他们之前的怀疑。动物的寿命越长,这些体细胞突变发生的速度就越慢。这表明科学家们几十年来关于体细胞突变在衰老过程中发挥作用的猜测是正确的。 但在科学家考虑了寿命之后,发现动物的体型大小和体细胞突变率之间没有关联,这使得研究人员推测,相对于体型而言,较大动物的癌症风险降低还有其他因素在起作用。 衰老和基因变化 衰老是一个复杂且多因素的生物过程,并且以体细胞突变形式积累的遗传变化并不是所发生的全部。细胞和身体组织可能会以许多其他方式受到损害,包括细胞内外错误折叠蛋白质的积累,以及由于环境影响而发生的表观遗传变化。 表观遗传变化实际上不会导致细胞 DNA 的变化,但可以通过改变身体“读取”特定 DNA 序列的方式来影响基因的工作方式。其他表观遗传变化可以阻止基因表达,因此,这些基因编码的蛋白质永远不会产生。癌症和基因变化 来自剑桥大学 Wellcome Sanger 研究所和...
亚精胺及其对人类健康和福祉的影响
1677 年,安东尼·范·列文虎克 (Antony Van Leeuwenhoek),一位受过中等教育的荷兰人,也是一位谦逊的纺织企业主,通过精心制作的高倍显微镜镜头进行观察,并得到了惊人的发现。出于无尽的好奇,列文虎克已经利用他自制的镜头做出了许多突破性的发现,包括单细胞动物和植物以及细菌的存在。 但在 1678 年的这一天,在同事的敦促下,他相当不情愿地决定将自己的精液样本放在镜头下,并惊讶地看到微小的、蠕动的“动物”(他称之为“动物”)在他的注视下游动。一年后,即 1679 年,列文虎克发现精液中存在微观晶体。 但直到 1888 年,这些晶体才被命名为“精胺”,直到 1926 年,正确的化学结构才被确定,这种化合物和其他类似的化合物(称为多胺)才从微生物、动物中分离出来。器官、植物。在化学上,聚胺是一组结构中具有两个或多个氨基的小分子。 亚精胺与所有多胺一样,对细胞分裂和生长很重要。这些化合物刚刚开始展现其多重功效,亚精胺成为衰老、认知能力下降、糖尿病、癌症等新疗法和预防药物前沿的明星。 让我们仔细看看亚精胺影响人类健康的具体方式。然后我们将了解哪些食物含有亚精胺,仅靠饮食无法为您提供足够的这种重要化合物,尤其是随着年龄的增长,然后在考虑补充亚精胺时应注意什么。 由于亚精胺对许多不同的健康状况具有积极影响,因此我们期望找到一些可能解释这一点的潜在生物学途径。目前的研究指出亚精胺似乎在许多领域发挥其强大作用的三种主要方式:自噬、抗炎作用以及作为热量限制模拟分子...... 亚精胺与自噬 首先,我们来了解一下自噬。该术语本身源自古希腊语αὐτόφαγος autóphagos。第一个“autó”表示“自我”,“phagos”表示“吃”。从字面上看,这个词的意思是“自食”。当身体细胞度过其生命周期时,它们会积累细胞碎片,包括陈旧的、受损的、畸形的或其他异常的蛋白质。自噬是一种自然发生的有序过程,可以清除这些受损或功能失调的成分。 尽管已经确定了四种不同形式的自噬,但研究最多和理解最多的类型是巨自噬,其中受损的细胞成分被分离出来,然后被细胞内称为自噬体的双膜囊泡隔离。自噬体收集受损成分后,会与可用的溶酶体融合,溶酶体是细胞内的一种膜结合细胞器,含有水解酶,可以分解许多不同种类的生物分子。自噬的减少与许多与衰老相关的疾病有关。自噬是细胞关键部分再生的最重要机制,因此具有巨大的抗衰老潜力,有可能延缓与年龄相关的疾病和死亡。 亚精胺是一种自噬激活剂,主要通过抑制一组称为乙酰转移酶的酶来发挥作用。这些酶,特别是组蛋白乙酰转移酶,被称为“表观基因组的主力”,在实际基因表达的表观遗传调控中发挥着非常重要的作用。 亚精胺作为抗炎药 随着衰老,慢性炎症似乎不可避免地增加。包括亚精胺在内的多胺水平在炎症期间增加,并刺激抗炎细胞因子的产生,同时减少促炎细胞因子的产生。细胞因子是在免疫反应中活跃的小蛋白质,并发出细胞运动至炎症、感染或创伤部位的信号。最近的研究表明,亚精胺还可以增强巨噬细胞的抗炎特性,巨噬细胞是一种专门的免疫细胞,可以检测和消灭细菌和其他有害生物。 亚精胺作为卡路里限制模拟物 热量限制和各种禁食方案是极少数经过验证的生活方式干预措施,可以明确延长许多生物体的寿命并改善健康,包括啮齿类动物模型以及非人类灵长类动物。但尽管间歇性禁食在过去几年中在许多健康和保健圈子中变得流行,但绝大多数人不愿意或无法彻底改变他们的饮食方式,尤其是在很长一段时间内。模拟热量限制效应的化合物(称为热量限制模拟物或 CRM)是很有吸引力的策略。亚精胺绝对符合 CRM 的定义,并且正在成为这一角色的主要竞争者。尽管禁食和热量限制的许多好处可能归因于自噬的增加,但自噬之外似乎还有其他机制可以解释亚精胺对衰老的积极作用。这些包括亚精胺本身的直接抗氧化作用,以及对精氨酸生物利用度和一氧化氮产生的代谢影响。精氨酸是一种用于蛋白质生物合成的氨基酸,一氧化氮会引起血管舒张,血管内壁肌肉松弛,从而使血管扩张并改善循环。 亚精胺及其在健康和福祉中的作用 现在我们已经研究了亚精胺作为自噬激活剂、抗炎剂和卡路里限制模拟物的作用,让我们更仔细地了解亚精胺对衰老、认知能力下降和癌症的影响,这可以说是最令人烦恼和代价最高的三种健康问题我们作为人类面临的问题。此外,我们还将关注一些研究,该研究表明亚精胺可能成为一种有效的抗病毒药物,甚至可以对抗 SARS-CoV-2 感染。 亚精胺与衰老研究表明,补充亚精胺可以延长许多模型生物的寿命,包括酵母、线虫、果蝇和啮齿动物。最近还有数据表明,增加膳食中亚精胺的供应不仅可以降低人类总体死亡率,还可以降低心血管和癌症相关的死亡人数。 亚精胺与认知SmartAge 是首个关于亚精胺对神经退行性疾病影响的人体试验,是一项由柏林 Charitè Universitätsmedizin 进行的随机、双盲、安慰剂对照研究,该研究于 2018 年启动,当时欧盟裁定第一种富含亚精胺的植物提取物为合法可用。 为期三个月的试验阶段的结果令人印象深刻,其中一组认知能力下降的老年参与者接受了富含亚精胺的植物提取物或安慰剂。在为期三个月的试验开始和结束时,对参与者的记忆力进行了评估。即使试验时间很短,结果也是积极的,服用富含亚精胺提取物的参与者显示出记忆力有所改善,而安慰剂对照组的记忆力没有变化。...
人工智能设计的“活机器人”为再生医学提供了潜在的新基础
如果繁殖是生命的标志,那么世界上第一个“活机器人”可能刚刚从佛蒙特州伯灵顿的培养皿中走出。诚然,“走出去”可能有点言过其实(人工智能设计的“xenobots”在盘子里毫不客气地滚来滚去)然而,他们确实在这个过程中取得了相当了不起的成就。这些吃豆人形状的微小生物从它们游泳的溶液中收集了青蛙干细胞,并构建了自己的复制品——其重要性怎么强调都不为过。 负责开发的团队来自佛蒙特大学、塔夫茨大学和哈佛大学维斯生物启发工程研究所,他们以去年公布的研究为基础,当时他们创造了第一个完全由活细胞构建的机器人(使用的细胞取自青蛙胚胎)。尽管这些最初的机器人在结构上是纯粹的有机体,但它们不被视为生物体,因为它们没有自我复制的能力——这是生物体最基本的特征之一。 但今年一切都变了。 新生命形态 为了给他们的异种机器人带来生命,该团队的联合领导者 Sam Kriegman 博士与佛蒙特大学的人工智能合作,并要求其设计一个异种机器人父结构。 “经过几个月的努力,人工智能想出了一些奇怪的设计,”克里格曼说,“其中包括一个类似于吃豆人的设计。”这非常不直观。看起来很简单,但这不是人类工程师能想出来的。为什么只有一张小嘴?为什么不是五个? 尽管人工智能提出的设计存在疑问,但这些结果仍然被用来构建父异种机器人。这位父母成功地生下了孩子,并继续生下了孙子。可怕的事情——不仅我们创造了一个自我复制的机器人,而且我们建造的另一个机器人(人工智能)为我们设计了它。组装异种机器人父母的道格拉斯·布莱克斯顿博士说:“很长一段时间以来,人们一直认为我们已经找到了生命繁殖或复制的所有方法,但这是从未被观察到的事情”前。' 现在,人造、自我复制生物的想法可能会让一些人不寒而栗,但是,我们还不需要担心吃豆人式的入侵者会夺取地球的控制权。异种机器人使用的自我复制系统尚未完全实现,该过程在几代之后就消失了。尽管如此,这一生物技术进步的影响是极其深远的,尤其是在医学方面。 异种机器人和再生医学 再生医学是一个涵盖针对受损组织的治疗的术语,主要集中于选择性细胞替换和修复。由于其主要目的是恢复活力,它通常被认为是抗衰老药物。然而,阻碍我们有效开发它的是我们无法准确地告诉细胞我们希望它们做什么。 佛蒙特大学正在进行的工作让我们离目标更近了。 异种机器人收集的胚胎青蛙细胞通常会发育成青蛙皮肤,然而,在佛蒙特州团队的手中,这些细胞被重新分配了任务。 “我们将它们置于一个新颖的环境中,”该研究的联合负责人迈克尔·莱文博士说。 “我们给他们一个重新想象他们的多细胞性的机会。”尽管这些细胞具有青蛙的基因组,但它们不受任何预定的生物路径的影响,并且可以利用它们的集体遗传智能来实现完全不同的目标。 “我们正在努力了解这个属性,”邦加德说。 “对于整个社会来说,重要的是我们研究并理解这是如何运作的。”的确。当你将我们对细胞结构日益加深的理解与人工智能创造生物工具的能力结合起来时,我们可能很快就会比以前拥有更多对我们自己的细胞的控制权——这项由佛蒙特州团队进行的研究授予我们有能力对抗细胞衰老的破坏并延长人类的寿命。 莱文说:“如果我们知道如何告诉细胞群做我们希望它们做的事情,最终,这就是再生医学。” “这是解决创伤性损伤、先天缺陷、癌症和衰老的方法。”所有这些不同的问题都在这里,因为我们不知道如何预测和控制将要构建哪些细胞群。 Xenobots 是一个新的教学平台。 让抗衰老技术成为现实 在这个早期阶段,很难真正掌握异种机器人的潜在应用。 “我们所能做的就是考虑这项技术相对于传统机器人的优势,”邦加德说,“它们体积小、可生物降解,并且喜欢在水中生存。”低成本海水淡化,毫无疑问抗衰老技术将成为未来研究的主要领域之一。在考虑经济回报之前,对任何研究团队来说,将与年龄相关的疾病从历史书中消除的前景肯定是足够诱人的。 再生医学可能还没有出现,但随着自我复制异种机器人的出现,我们无疑已经朝着它迈出了一大步。我们自己的细胞有可能被重新分配任务来对抗衰老的标志,我们不仅会活得更久,而且我们将能够更多地享受它——你可以保持健康,并很好地活到三百岁。因此,下次玩吃豆人时,您可能需要更认真地对待它,因为它的表亲,异种机器人,可能会在不久的将来为您带来长生不老药。 参考: 1. R. D. Kamm 等人,《观点:多细胞工程生命系统的前景》。 APL 生物工程。 2、040901(2018)。 2. D. Blackiston 等人,用于开发合成生命机器的细胞平台。科学。机器人。 6、eabf1571(2021)。3....
细胞衰老和老化 - 你能做什么
许多人对“衰老”这个词有些熟悉,并将其视为衰老的代名词。毕竟,这个词的词根是“sen-”,意思是“老”,也是“senile”这个词的词根,当然意味着老年的特征。但当生物学家谈论细胞衰老时,他们所说的并不完全是人们通常认为的衰老过程。根据组织类型的不同,体内细胞的存活时间也不同。白细胞的寿命约为 13 天,而红细胞的寿命为 120 天。脂肪细胞的寿命约为 8 年,肠道细胞(不包括内壁)的寿命约为 16 年。 当身体细胞到达其自然生命的终点时,它们会通过称为细胞凋亡(称为“a-pop-TOE-sis”)的过程进行预先编程的死亡,该过程的设计目的是不损害附近的任何细胞。或者细胞可能还年轻或处于中年,并以某种方式受损。很多时候,这种损伤可以被修复,细胞恢复其正常功能。如果损伤太严重,细胞会再次发生凋亡并被破坏。 正常情况下,细胞会不断分裂,既可以替换死亡的细胞,也可以帮助修复,例如生长新的皮肤细胞来闭合伤口。有时,当细胞 DNA 受损时,这些细胞就会癌变并不受控制地增殖。 了解细胞衰老细胞对损伤做出反应的另一种方式是衰老,这种损伤不会严重到引发细胞凋亡。这意味着它们不会陷入失控的增殖,而是简单地停止分裂,正常的细胞周期结束。许多科学家认为,这种进入衰老状态的能力是身体试图防止这些受损细胞癌变的一种方式。 尽管这些衰老细胞没有活跃分裂,但它们无论如何也没有死亡。衰老细胞的代谢仍然非常活跃,分泌一系列蛋白质和其他分子,称为SASP(衰老相关分泌表型),可引起炎症。通过这种方式,衰老细胞可以向免疫细胞发出信号,帮助清除损伤并帮助组织修复。到目前为止,这看起来是一件好事。但即使 SASP 确实有助于组织修复,但该阵列中的一些蛋白质和分子可能会产生有害影响。随着年龄的增长,衰老细胞开始在体内积累,包括大脑。这些衰老细胞都会产生 SASP 炎症分子和蛋白质,它们实际上会加速衰老本身,并使心脏病和阿尔茨海默氏症等与年龄相关的疾病恶化。另外,持续接触 SASP 实际上会导致健康细胞衰老。 清除体内的衰老细胞 如果这些衰老细胞以及它们产生的有毒炎症 SASP 蛋白和分子能够从体内清除,结果会怎样呢?已经证明,在神经退行性疾病小鼠模型中,清除衰老细胞可以改善这些动物的大脑功能。 但当时不知道的是:从体内清除衰老细胞是否有助于缓解正常衰老带来的大脑衰老和认知能力下降?由梅奥诊所罗伯特和阿琳科戈德衰老中心的科学家牵头的最新研究发表在 2021 年 1 月 21 日的《衰老细胞》杂志上,试图回答这个问题。研究人员再次转向小鼠模型来试图回答这个问题。研究小组使用了转基因小鼠。这些小鼠经过专门培育,作为医学研究的一部分,并将“外来”DNA 插入小鼠受精卵的细胞核中。当小鼠发育时,外源DNA就成为每个细胞的一部分。这些特殊培育的小鼠使研究小组能够使用一种药物选择性杀死表达P16ink4a的细胞,P16ink4a是一种参与细胞周期调节的蛋白质,并且减缓细胞分裂强>。 随着生物体变老,P16ink4a 蛋白的表达增加。这有助于身体减少干细胞的增殖,从而降低癌症风险,但同时使身体容易受到 SASP 蛋白和这些衰老细胞产生的其他分子的影响。由于这种方法不能保证消灭所有衰老细胞,研究人员还使用了一种组合药物混合物来靶向小鼠体内剩余的衰老细胞。研究人员使用了几组老年小鼠(25 至 29 个月)以及一组年轻小鼠作为比较。 结果非常明确:去除老年小鼠体内和大脑中的衰老细胞可以减轻与年龄相关的认知障碍,特别是空间记忆功能障碍。研究结果还显示,海马体神经元中的衰老标志物有所减少,海马体是大脑中与记忆和认知特别相关的部分,并且随着年龄的增长而逐渐恶化。 衰老细胞的清除还显着减少了脑炎症标志物,而脑炎症标志物显然与年龄相关的认知障碍有关。尽管作者强调,目前尚不完全清楚细胞衰老如何影响大脑衰老,但他们的研究结果明确表明,针对清除衰老细胞的疗法为衰老大脑的复兴和改善记忆提供了一种有希望的方法。在老年人中。 NAD 和细胞衰老 ...