Nutriop 长寿博客

Breath of Vitality: Unlocking Longevity through VO2 Max Enhancement with Nutriop

活力之息:通过 Nutriop 增强最大摄氧量来延长寿命

想象一个世界,每一次呼吸都是迈向更长寿、更有活力的生活的一步。这不是幻想;而是幻想。这是最大摄氧量的实际情况,即最大摄氧量。最大摄氧量不仅仅是运动员关心的问题,它是衡量身体在剧烈体力消耗期间利用氧气能力的重要指标。它就像一个内部功率计,暗示您的心脏、肺部和肌肉在面对挑战时的协作程度。这个非凡的指标不仅与耐力有关,而且与耐力有关。它与我们如何优雅地变老以及我们的成长时间密切相关。了解最大摄氧量:从本质上讲,最大摄氧量是最大运动量时身体用氧能力的最高值。它以每分钟每公斤体重的氧气毫升数来衡量,对于评估您的心肺健康至关重要。将您的身体想象成一辆高性能车辆; VO2 max 是其最高速度。它越高,您的心脏泵血、肺部输送氧气以及肌肉利用这种赋予生命的气体的效率就越高。它是您内部健康的综合图景,是指导您长寿之旅的灯塔。最大摄氧量与衰老:衰老是一场不可避免的变化交响曲,最大摄氧量在这场交响曲中演奏着自己的旋律。随着年龄的增长,最大摄氧量自然会下降,反映出心脏泵血能力和肌肉力量的变化。然而,科学带来了一线希望,表明更高的最大摄氧量水平和更长的寿命之间存在着明显的联系。这表明,提高最大摄氧量就好比延长寿命,让生命延续。这是关于扭转时间潮流,让每一次心跳和呼吸都发挥作用,以追求持久的活力。提高最大摄氧量以延长寿命:提高最大摄氧量就像调整发动机以获得最佳性能。定期进行各种锻炼,尤其是那些挑战您心肺功能的锻炼,可以显著提高这一重要指标。 研究表明,无论年龄大小,从心态年轻的人到银发战士,每个人都可以提高最大摄氧量。这段旅程不是冲向无法实现的目标;而是关于坚持、奉献和一步一步、一口气地前进和进步的乐趣。现实生活中的影响:将最大摄氧量练习融入日常生活中不仅是获得更好表现的途径,也是提高表现的途径。它是通往更健康、更充实生活的大门。无论是早晨轻快地散步、骑自行车穿过公园,还是在星空下跳舞,每一个动作都很重要。现实生活中的成功故事比比皆是,展示了通过积极的生活方式改变健康轨迹的人。它证明了毅力的力量、运动的魔力以及更健康明天的承诺。结论:最大摄氧量不仅仅是一个健身指标,更是对我们生命潜力的证明。Nutriop 长寿补充剂与积极的生活方式一起,在提高我们的最大摄氧量方面发挥着关键作用,为更长寿、更健康的生活铺平了道路。让我们在正确的支持下踏上这段旅程,庆祝每一次呼吸,将其作为迈向持久活力的一步。

活力之息:通过 Nutriop 增强最大摄氧量来延长寿命

想象一个世界,每一次呼吸都是迈向更长寿、更有活力的生活的一步。这不是幻想;而是幻想。这是最大摄氧量的实际情况,即最大摄氧量。最大摄氧量不仅仅是运动员关心的问题,它是衡量身体在剧烈体力消耗期间利用氧气能力的重要指标。它就像一个内部功率计,暗示您的心脏、肺部和肌肉在面对挑战时的协作程度。这个非凡的指标不仅与耐力有关,而且与耐力有关。它与我们如何优雅地变老以及我们的成长时间密切相关。了解最大摄氧量:从本质上讲,最大摄氧量是最大运动量时身体用氧能力的最高值。它以每分钟每公斤体重的氧气毫升数来衡量,对于评估您的心肺健康至关重要。将您的身体想象成一辆高性能车辆; VO2 max 是其最高速度。它越高,您的心脏泵血、肺部输送氧气以及肌肉利用这种赋予生命的气体的效率就越高。它是您内部健康的综合图景,是指导您长寿之旅的灯塔。最大摄氧量与衰老:衰老是一场不可避免的变化交响曲,最大摄氧量在这场交响曲中演奏着自己的旋律。随着年龄的增长,最大摄氧量自然会下降,反映出心脏泵血能力和肌肉力量的变化。然而,科学带来了一线希望,表明更高的最大摄氧量水平和更长的寿命之间存在着明显的联系。这表明,提高最大摄氧量就好比延长寿命,让生命延续。这是关于扭转时间潮流,让每一次心跳和呼吸都发挥作用,以追求持久的活力。提高最大摄氧量以延长寿命:提高最大摄氧量就像调整发动机以获得最佳性能。定期进行各种锻炼,尤其是那些挑战您心肺功能的锻炼,可以显著提高这一重要指标。 研究表明,无论年龄大小,从心态年轻的人到银发战士,每个人都可以提高最大摄氧量。这段旅程不是冲向无法实现的目标;而是关于坚持、奉献和一步一步、一口气地前进和进步的乐趣。现实生活中的影响:将最大摄氧量练习融入日常生活中不仅是获得更好表现的途径,也是提高表现的途径。它是通往更健康、更充实生活的大门。无论是早晨轻快地散步、骑自行车穿过公园,还是在星空下跳舞,每一个动作都很重要。现实生活中的成功故事比比皆是,展示了通过积极的生活方式改变健康轨迹的人。它证明了毅力的力量、运动的魔力以及更健康明天的承诺。结论:最大摄氧量不仅仅是一个健身指标,更是对我们生命潜力的证明。Nutriop 长寿补充剂与积极的生活方式一起,在提高我们的最大摄氧量方面发挥着关键作用,为更长寿、更健康的生活铺平了道路。让我们在正确的支持下踏上这段旅程,庆祝每一次呼吸,将其作为迈向持久活力的一步。

Aging Gracefully: The Art of Stress Management and Building Resilience

优雅地老去:压力管理和增强韧性的艺术

在一个经常充满动荡的世界中,从自然灾害到经济不确定性,压力已成为我们生活中不可分割的一部分。令人担忧的是,长期承受压力不仅会扰乱我们内心的平静,还会导致衰老以及心脏病和中风等重大健康问题。通常,我们不可能消除周围的压力源。然而,可行的方法是调整我们的感知并增强对这些压力源的适应力。本文阐述了压力管理的最新研究,并介绍了各种帮助应对压力情况的技术,强调了其对延长寿命的重要性。压力是对任何需要适应或改变的情况的自动身体反应。这种由应激激素控制的反应会引发各种生理变化,这是一个复杂的过程,由哈佛大学生理学家沃尔特·B·坎农 (Walter B. Cannon) 在一个世纪前首创。他发现了“战斗或逃跑”反应,这是我们都非常熟悉的反应。当面临压力时,我们的心率会飙升,肌肉紧张,呼吸也会加快。深入研究压力反应的内部运作机制,揭示了我们的大脑、自主神经系统和一系列激素(包括肾上腺素)之间复杂的相互作用。当面临威胁时,这些激素与自主神经系统结合,让我们的身体做好准备战斗或逃跑。虽然这种反应可以在紧急危险时挽救生命,但长期激活可能会损害我们的健康并加速衰老。与早期的看法相反,压力反应通常会在很长一段时间内保持激活状态,尤其是在我们快节奏的社会中,压力源接二连三。这种持续的激活可能会导致持续的炎症和对我们身体的其他破坏性影响,这凸显了压力管理的重要性。虽然人们常常从负面角度看待压力,但值得注意的是,短期压力可能是有益的。它可以激励人们在紧急任务或人身危险时表现出非凡的业绩。这种“好的”压力或良性压力可以帮助克服障碍并有助于提高绩效水平。然而,持续或过度的压力(称为“苦恼”)可能会妨碍适应和应对的能力,导致表现和健康状况下降。 尽管如此,有些人还是在压力下茁壮成长。这些人通常以控制感、承诺感和强大的社会支持为特征,被称为“有弹性的”。他们展示了如何有效管理压力以产生积极的结果。   然而,慢性压力(身体的压力反应不适应)可能会导致严重的健康问题,例如高血压。必须识别这些压力来源并有效管理它们,以减轻对我们的健康和衰老的潜在负面影响。优雅地管理压力和衰老的关键在于培养韧性和技巧来引发放松反应,这与压力反应截然相反。通过定期练习,我们可以恢复平衡并增强我们的幸福感。当我们应对生活中的压力源时,我们要记住,并非所有压力都是坏事。通过有效的管理,我们可以将压力变成促进成长和长寿的强大工具。   利用压力管理的力量:健康老龄化和心血管健康的关键   科学研究揭穿了冥想等练习对于减轻压力无效的观点,表明它们对基因活动具有深远的影响,从而对身体健康产生积极影响。慢性压力会导致血压升高、影响心脏并导致糖尿病和哮喘等疾病,从而对健康产生负面影响。它甚至可以加速衰老。相反,有效管理压力的人往往会享有更好的健康。自 2008 年以来, 加州大学洛杉矶分校本森-亨利身心医学研究所和迈阿密大学等机构开展的研究表明,通过冥想等练习引发的放松反应可以改变某些基因的活性,从而增进健康。这种反应降低了与慢性炎症相关的基因活性,据信慢性炎症会导致心脏病、炎症性肠病和糖尿病等慢性疾病。同时,它还增强了与能量使用、胰岛素敏感性、端粒维持和线粒体功能等有益功能相关的基因活性,从而帮助身体抵抗氧化应激。对两组人(长期练习放松反应技术的人和新手)进行的研究表明,经过八周的训练后,基因活性发生了显着变化。强调需要定期引发放松反应,以保持有益的变化。在使用这些技术治疗与压力相关的疾病的人们中也观察到了类似的变化,对健康产生了积极影响,包括降低血压、改善疼痛等级和生活质量。慢性压力是导致心血管疾病(如动脉粥样硬化、心脏病、高血压和各种心律失常)的重要因素。抑郁、焦虑、愤怒、孤独以及与工作、家庭和财务相关的挑战等心理和社会因素也起着一定作用。9/11恐怖袭击后的观察表明,压力大的人患高血压和其他心脏疾病的可能性更高。慢性压力会增加不健康的低密度脂蛋白胆固醇水平,升高血压,更容易形成血栓,并引起慢性炎症,所有这些都会导致心脏病。2017 年的一项研究表明,大脑恐惧中心杏仁核活动增强会引发一系列事件,导致炎症和白细胞释放,从而增加心脏病发作的风险。这些发现强调了压力管理对心血管健康的重要性。研究还表明,控制压力可能有助于延缓衰老,因为端粒是染色体末端的保护结构,随着细胞的不断更新,端粒会逐渐变短。压力似乎会加速这一过程,压力大的人端粒往往更短。一项初步研究表明,采用低脂饮食、运动、减压和社会支持计划可以将端粒长度增加 10%,从而有可能延缓衰老。   压力管理在心脏健康和康复中的潜力 研究表明,压力管理对心脏病有益。研究考察了本森-亨利身心医学研究所的心脏健康计划和迪恩奥尼什博士的心脏病逆转计划。这些计划旨在通过改变生活方式,如压力管理、锻炼和营养咨询来改善心脏健康。经过三年的研究,这两个项目的参与者的健康状况都有显著改善,包括体重减轻、血压降低、胆固醇水平改善和心理健康增强。参与者还报告心脏功能有所改善,与对照组相比,本森-亨利计划中的参与者死亡率更低,因心脏病住院的可能性更小。研究还发现,压力管理可以提高心脏病发作或心脏手术后患者心脏康复的益处。将压力管理纳入康复的患者心脏病发作发生率为 18%,而标准康复的患者心脏病发作发生率为 33%,未参与康复的患者心脏病发作发生率为 47%。以正念为基础的减压计划也有望改善心脏病发作幸存者的抑郁、压力和焦虑。有证据表明,结合身心方法来减轻压力可以提高传统心脏康复的有效性。结论:冥想和其他减压技巧可以带来巨大的健康益处,抵消慢性压力对身体健康的有害影响,并有可能延缓衰老过程。慢性压力会导致各种健康问题,例如高血压、心脏病和加速衰老。然而,定期练习压力管理技巧可以抵消这些影响,有助于改善健康状况。研究表明,这些做法可以影响与炎症和细胞健康相关的基因活性,甚至可能通过维持端粒长度来减缓衰老过程。在心血管疾病的背景下,压力可显着促进各种疾病的发展,其影响范围从不健康胆固醇水平升高到慢性炎症。然而,压力管理技术已被证明可以改善心脏病患者的健康结果,有可能改善心脏功能并减少心脏事件的发生率。总体而言,证据表明压力管理技术可以提供显着的健康益处。这些好处不仅可以抵消慢性压力对身体健康的不利影响,还有助于改善心理健康。定期练习这些技术是关键,“剂量反应”效应表明,使用越频繁和一致,效果就越大。这些发现强调了压力管理作为维持和增强整体健康和福祉的宝贵工具的重要性。  

优雅地老去:压力管理和增强韧性的艺术

在一个经常充满动荡的世界中,从自然灾害到经济不确定性,压力已成为我们生活中不可分割的一部分。令人担忧的是,长期承受压力不仅会扰乱我们内心的平静,还会导致衰老以及心脏病和中风等重大健康问题。通常,我们不可能消除周围的压力源。然而,可行的方法是调整我们的感知并增强对这些压力源的适应力。本文阐述了压力管理的最新研究,并介绍了各种帮助应对压力情况的技术,强调了其对延长寿命的重要性。压力是对任何需要适应或改变的情况的自动身体反应。这种由应激激素控制的反应会引发各种生理变化,这是一个复杂的过程,由哈佛大学生理学家沃尔特·B·坎农 (Walter B. Cannon) 在一个世纪前首创。他发现了“战斗或逃跑”反应,这是我们都非常熟悉的反应。当面临压力时,我们的心率会飙升,肌肉紧张,呼吸也会加快。深入研究压力反应的内部运作机制,揭示了我们的大脑、自主神经系统和一系列激素(包括肾上腺素)之间复杂的相互作用。当面临威胁时,这些激素与自主神经系统结合,让我们的身体做好准备战斗或逃跑。虽然这种反应可以在紧急危险时挽救生命,但长期激活可能会损害我们的健康并加速衰老。与早期的看法相反,压力反应通常会在很长一段时间内保持激活状态,尤其是在我们快节奏的社会中,压力源接二连三。这种持续的激活可能会导致持续的炎症和对我们身体的其他破坏性影响,这凸显了压力管理的重要性。虽然人们常常从负面角度看待压力,但值得注意的是,短期压力可能是有益的。它可以激励人们在紧急任务或人身危险时表现出非凡的业绩。这种“好的”压力或良性压力可以帮助克服障碍并有助于提高绩效水平。然而,持续或过度的压力(称为“苦恼”)可能会妨碍适应和应对的能力,导致表现和健康状况下降。 尽管如此,有些人还是在压力下茁壮成长。这些人通常以控制感、承诺感和强大的社会支持为特征,被称为“有弹性的”。他们展示了如何有效管理压力以产生积极的结果。   然而,慢性压力(身体的压力反应不适应)可能会导致严重的健康问题,例如高血压。必须识别这些压力来源并有效管理它们,以减轻对我们的健康和衰老的潜在负面影响。优雅地管理压力和衰老的关键在于培养韧性和技巧来引发放松反应,这与压力反应截然相反。通过定期练习,我们可以恢复平衡并增强我们的幸福感。当我们应对生活中的压力源时,我们要记住,并非所有压力都是坏事。通过有效的管理,我们可以将压力变成促进成长和长寿的强大工具。   利用压力管理的力量:健康老龄化和心血管健康的关键   科学研究揭穿了冥想等练习对于减轻压力无效的观点,表明它们对基因活动具有深远的影响,从而对身体健康产生积极影响。慢性压力会导致血压升高、影响心脏并导致糖尿病和哮喘等疾病,从而对健康产生负面影响。它甚至可以加速衰老。相反,有效管理压力的人往往会享有更好的健康。自 2008 年以来, 加州大学洛杉矶分校本森-亨利身心医学研究所和迈阿密大学等机构开展的研究表明,通过冥想等练习引发的放松反应可以改变某些基因的活性,从而增进健康。这种反应降低了与慢性炎症相关的基因活性,据信慢性炎症会导致心脏病、炎症性肠病和糖尿病等慢性疾病。同时,它还增强了与能量使用、胰岛素敏感性、端粒维持和线粒体功能等有益功能相关的基因活性,从而帮助身体抵抗氧化应激。对两组人(长期练习放松反应技术的人和新手)进行的研究表明,经过八周的训练后,基因活性发生了显着变化。强调需要定期引发放松反应,以保持有益的变化。在使用这些技术治疗与压力相关的疾病的人们中也观察到了类似的变化,对健康产生了积极影响,包括降低血压、改善疼痛等级和生活质量。慢性压力是导致心血管疾病(如动脉粥样硬化、心脏病、高血压和各种心律失常)的重要因素。抑郁、焦虑、愤怒、孤独以及与工作、家庭和财务相关的挑战等心理和社会因素也起着一定作用。9/11恐怖袭击后的观察表明,压力大的人患高血压和其他心脏疾病的可能性更高。慢性压力会增加不健康的低密度脂蛋白胆固醇水平,升高血压,更容易形成血栓,并引起慢性炎症,所有这些都会导致心脏病。2017 年的一项研究表明,大脑恐惧中心杏仁核活动增强会引发一系列事件,导致炎症和白细胞释放,从而增加心脏病发作的风险。这些发现强调了压力管理对心血管健康的重要性。研究还表明,控制压力可能有助于延缓衰老,因为端粒是染色体末端的保护结构,随着细胞的不断更新,端粒会逐渐变短。压力似乎会加速这一过程,压力大的人端粒往往更短。一项初步研究表明,采用低脂饮食、运动、减压和社会支持计划可以将端粒长度增加 10%,从而有可能延缓衰老。   压力管理在心脏健康和康复中的潜力 研究表明,压力管理对心脏病有益。研究考察了本森-亨利身心医学研究所的心脏健康计划和迪恩奥尼什博士的心脏病逆转计划。这些计划旨在通过改变生活方式,如压力管理、锻炼和营养咨询来改善心脏健康。经过三年的研究,这两个项目的参与者的健康状况都有显著改善,包括体重减轻、血压降低、胆固醇水平改善和心理健康增强。参与者还报告心脏功能有所改善,与对照组相比,本森-亨利计划中的参与者死亡率更低,因心脏病住院的可能性更小。研究还发现,压力管理可以提高心脏病发作或心脏手术后患者心脏康复的益处。将压力管理纳入康复的患者心脏病发作发生率为 18%,而标准康复的患者心脏病发作发生率为 33%,未参与康复的患者心脏病发作发生率为 47%。以正念为基础的减压计划也有望改善心脏病发作幸存者的抑郁、压力和焦虑。有证据表明,结合身心方法来减轻压力可以提高传统心脏康复的有效性。结论:冥想和其他减压技巧可以带来巨大的健康益处,抵消慢性压力对身体健康的有害影响,并有可能延缓衰老过程。慢性压力会导致各种健康问题,例如高血压、心脏病和加速衰老。然而,定期练习压力管理技巧可以抵消这些影响,有助于改善健康状况。研究表明,这些做法可以影响与炎症和细胞健康相关的基因活性,甚至可能通过维持端粒长度来减缓衰老过程。在心血管疾病的背景下,压力可显着促进各种疾病的发展,其影响范围从不健康胆固醇水平升高到慢性炎症。然而,压力管理技术已被证明可以改善心脏病患者的健康结果,有可能改善心脏功能并减少心脏事件的发生率。总体而言,证据表明压力管理技术可以提供显着的健康益处。这些好处不仅可以抵消慢性压力对身体健康的不利影响,还有助于改善心理健康。定期练习这些技术是关键,“剂量反应”效应表明,使用越频繁和一致,效果就越大。这些发现强调了压力管理作为维持和增强整体健康和福祉的宝贵工具的重要性。  

Boosting NAD+ Metabolism with NMN Supplementation: The Latest Clinical Trial Results

通过补充 NMN 促进 NAD+ 代谢:最新临床试验结果

介绍在追求健康衰老的过程中,科学家们一直在探索各种可能减缓衰老过程并改善整体健康的化合物。 烟酰胺单核苷酸 (NMN) 是一种引起广泛关注的化合物。 NMN 是维生素 B3 的衍生物,在称为烟酰胺腺嘌呤二核苷酸 (NAD+) 的重要细胞资源的生产中发挥着至关重要的作用。 NAD+ 对于能量产生、DNA 修复和各种其他细胞功能至关重要。随着年龄的增长,我们体内的 NAD+ 水平下降,导致细胞功能下降并加速衰老过程。最近,一项名为“ 长期补充烟酰胺单核苷酸后烟酰胺腺嘌呤二核苷酸代谢和动脉僵硬:一项随机、双盲、安慰剂对照试验”的开创性研究发表,揭示了补充 NMN 对人类的潜在益处。这篇博文旨在打破复杂的科学术语,以一种读者容易理解的方式呈现这项研究的结果。研究设计该研究是一项随机、双盲、安慰剂对照试验,被认为是临床研究的黄金标准。它涉及 36 名年龄在 40 岁至 65 岁之间的健康男性和女性参与者。参与者被随机分配到两组。一组接受 NMN 补充剂(125 毫克/胶囊),另一组接受安慰剂胶囊。参与者被要求每天两次饭后服用一粒胶囊,为期 12 周。目标该研究的主要目的是调查长期补充 NMN...

1 comment

通过补充 NMN 促进 NAD+ 代谢:最新临床试验结果

介绍在追求健康衰老的过程中,科学家们一直在探索各种可能减缓衰老过程并改善整体健康的化合物。 烟酰胺单核苷酸 (NMN) 是一种引起广泛关注的化合物。 NMN 是维生素 B3 的衍生物,在称为烟酰胺腺嘌呤二核苷酸 (NAD+) 的重要细胞资源的生产中发挥着至关重要的作用。 NAD+ 对于能量产生、DNA 修复和各种其他细胞功能至关重要。随着年龄的增长,我们体内的 NAD+ 水平下降,导致细胞功能下降并加速衰老过程。最近,一项名为“ 长期补充烟酰胺单核苷酸后烟酰胺腺嘌呤二核苷酸代谢和动脉僵硬:一项随机、双盲、安慰剂对照试验”的开创性研究发表,揭示了补充 NMN 对人类的潜在益处。这篇博文旨在打破复杂的科学术语,以一种读者容易理解的方式呈现这项研究的结果。研究设计该研究是一项随机、双盲、安慰剂对照试验,被认为是临床研究的黄金标准。它涉及 36 名年龄在 40 岁至 65 岁之间的健康男性和女性参与者。参与者被随机分配到两组。一组接受 NMN 补充剂(125 毫克/胶囊),另一组接受安慰剂胶囊。参与者被要求每天两次饭后服用一粒胶囊,为期 12 周。目标该研究的主要目的是调查长期补充 NMN...

1 comment
Unleash the Power of Autophagy for Longevity and Long-Term Health

释放自噬的力量,实现长寿和长期健康

了解自噬及其好处   “自噬”一词源自希腊语,翻译为“自食”。自噬是一种分解代谢过程,可分解和回收细胞成分,有助于产生新细胞。这种自我调节机制,也称为体内平衡,在维持体内健康平衡方面发挥着至关重要的作用。在自噬过程中,细胞质(细胞核外的一种胶状物质)和称为细胞器的小结构被从细胞中移除并回收。这个过程对于去除不再正常运作的细胞至关重要。自噬的破坏与多种疾病有关,特别是帕金森氏症等神经退行性疾病。     自噬过程的解释 当细胞缺乏足够的营养时,就会触发自噬。该过程由四个阶段组成:1. 碳封存称为吞噬泡的双膜结构包围并包围细胞质和细胞器。然后吞噬细胞转变为一种称为自噬体的细胞器。2. 融合自噬体与内体融合形成两性体,然后能够与溶酶体融合。3. 降解一旦与溶酶体融合,水解酶会分解最初被自噬体包围的物质,从​​而发生降解。所得结构称为自噬溶酶体或自溶酶体。4. 重复使用完全降解后,氨基酸被释放到细胞液中,并可以被新细胞重复使用。这些氨基酸用于 TCA 循环(也称为柠檬酸循环),这是一系列化学反应,是细胞呼吸的主要驱动力。 NAD+ 是我们最畅销的补充剂之一,在大多数 TCA 循环反应中发挥着至关重要的作用。自噬的不同类型自噬分为三种类型,每种类型都有不同的特征:1. 巨自噬这是指上面概述的一般自噬过程。2. 微自噬该过程还吞噬并降解不同的细胞结构,但在隔离过程中不涉及吞噬细胞。相反,溶酶体直接吞噬细胞内容物,将其分解成氨基酸进行回收。3. 伴侣介导的自噬这种选择性过程以蛋白质为目标进行降解,伴侣蛋白有助于可降解蛋白质沿着溶酶体膜易位。自噬在抗衰老和长寿中的作用自噬是一种应激反应(由细胞饥饿触发),可以使细胞恢复活力,使细胞更加节能、更能抵抗损伤。研究表明,激活自噬可以抑制与年龄相关的细胞缺陷的积累,从而显着提高目标细胞的代谢效率。自噬还可以针对功能障碍的线粒体,产生有害的活性氧 (ROS),从而导致细胞降解——这一过程称为线粒体自噬。研究表明,诱导自噬可以延长小鼠的寿命。自噬的额外好处除了抗衰老之外,自噬在预防与年龄相关的疾病方面也发挥着关键作用。它可以去除与阿尔茨海默病和帕金森病等神经退行性疾病相关的有毒蛋白质。自噬还可以通过将损坏的细胞结构分解为氨基酸来防止故障细胞增殖并形成癌症的基础。尽管还需要更多的研究,但许多医学专业人士认为自噬对于预防和治疗癌症至关重要,因为它可以提高基因组的稳定性。总之,自噬提供了许多已知或推测的好处,包括:- 调节细胞内的线粒体,增强能量产生。- 保护免疫和神经系统。- 预防代谢应激。- 通过促进新细胞生长,尤其是大脑和心脏中的细胞生长,可能预防心脏病和认知能力下降。- 通过恢复肠道内壁来预防克罗恩病等炎症性疾病,从而改善消化功能。- 稳定 DNA 并保护我们的基因。- 可能预防和治疗各种癌症类型,因为它被认为是一种肿瘤抑制剂。-...

释放自噬的力量,实现长寿和长期健康

了解自噬及其好处   “自噬”一词源自希腊语,翻译为“自食”。自噬是一种分解代谢过程,可分解和回收细胞成分,有助于产生新细胞。这种自我调节机制,也称为体内平衡,在维持体内健康平衡方面发挥着至关重要的作用。在自噬过程中,细胞质(细胞核外的一种胶状物质)和称为细胞器的小结构被从细胞中移除并回收。这个过程对于去除不再正常运作的细胞至关重要。自噬的破坏与多种疾病有关,特别是帕金森氏症等神经退行性疾病。     自噬过程的解释 当细胞缺乏足够的营养时,就会触发自噬。该过程由四个阶段组成:1. 碳封存称为吞噬泡的双膜结构包围并包围细胞质和细胞器。然后吞噬细胞转变为一种称为自噬体的细胞器。2. 融合自噬体与内体融合形成两性体,然后能够与溶酶体融合。3. 降解一旦与溶酶体融合,水解酶会分解最初被自噬体包围的物质,从​​而发生降解。所得结构称为自噬溶酶体或自溶酶体。4. 重复使用完全降解后,氨基酸被释放到细胞液中,并可以被新细胞重复使用。这些氨基酸用于 TCA 循环(也称为柠檬酸循环),这是一系列化学反应,是细胞呼吸的主要驱动力。 NAD+ 是我们最畅销的补充剂之一,在大多数 TCA 循环反应中发挥着至关重要的作用。自噬的不同类型自噬分为三种类型,每种类型都有不同的特征:1. 巨自噬这是指上面概述的一般自噬过程。2. 微自噬该过程还吞噬并降解不同的细胞结构,但在隔离过程中不涉及吞噬细胞。相反,溶酶体直接吞噬细胞内容物,将其分解成氨基酸进行回收。3. 伴侣介导的自噬这种选择性过程以蛋白质为目标进行降解,伴侣蛋白有助于可降解蛋白质沿着溶酶体膜易位。自噬在抗衰老和长寿中的作用自噬是一种应激反应(由细胞饥饿触发),可以使细胞恢复活力,使细胞更加节能、更能抵抗损伤。研究表明,激活自噬可以抑制与年龄相关的细胞缺陷的积累,从而显着提高目标细胞的代谢效率。自噬还可以针对功能障碍的线粒体,产生有害的活性氧 (ROS),从而导致细胞降解——这一过程称为线粒体自噬。研究表明,诱导自噬可以延长小鼠的寿命。自噬的额外好处除了抗衰老之外,自噬在预防与年龄相关的疾病方面也发挥着关键作用。它可以去除与阿尔茨海默病和帕金森病等神经退行性疾病相关的有毒蛋白质。自噬还可以通过将损坏的细胞结构分解为氨基酸来防止故障细胞增殖并形成癌症的基础。尽管还需要更多的研究,但许多医学专业人士认为自噬对于预防和治疗癌症至关重要,因为它可以提高基因组的稳定性。总之,自噬提供了许多已知或推测的好处,包括:- 调节细胞内的线粒体,增强能量产生。- 保护免疫和神经系统。- 预防代谢应激。- 通过促进新细胞生长,尤其是大脑和心脏中的细胞生长,可能预防心脏病和认知能力下降。- 通过恢复肠道内壁来预防克罗恩病等炎症性疾病,从而改善消化功能。- 稳定 DNA 并保护我们的基因。- 可能预防和治疗各种癌症类型,因为它被认为是一种肿瘤抑制剂。-...

Epigenetic Age Acceleration and Its Link to Healthy Longevity in Older Women

表观遗传年龄加速及其与老年女性健康长寿的联系

介绍随着世界人口老龄化,了解促进健康老龄化的因素变得越来越重要。引起关注的一个研究领域是表观遗传年龄加速(EAA)的研究。 EAA 是指一个人的生物年龄(通过 DNA 的特定变化来衡量)与其实际年龄之间的差异。这种差异可以让我们深入了解一个人的整体健康状况以及患年龄相关疾病的可能性。最近的一项研究调查了老年女性EAA 与健康长寿之间的关系,这使其成为第一个探索这种关系的研究。研究概述该研究涉及 1,813 名 70 岁及以上的女性,她们是女性健康倡议 (WHI) 的一部分。 WHI 是一项始于 1993 年的长期研究,旨在确定预防绝经后女性心脏病、骨质疏松症、乳腺癌和结直肠癌的策略。根据健康状况,参与者被分为三组:健康长寿者(活到 90 岁,活动能力和认知功能完好)、活到 90 岁但行动能力和认知功能完好的人,以及未能幸存的人到90岁。表观遗传年龄测量EAA 是使用四个已建立的表观遗传时钟来测量的,该时钟根据基因组中特定位点的 DNA 甲基化水平来估计生物年龄。这些时钟包括 Horvath pantissue、Hannum、Pheno 和 Grim 时钟。 DNA甲基化是参与基因表达和剪接的重要表观遗传机制,这些时钟可以为了解一个人的生物年龄和健康状况提供有价值的见解。  ...

表观遗传年龄加速及其与老年女性健康长寿的联系

介绍随着世界人口老龄化,了解促进健康老龄化的因素变得越来越重要。引起关注的一个研究领域是表观遗传年龄加速(EAA)的研究。 EAA 是指一个人的生物年龄(通过 DNA 的特定变化来衡量)与其实际年龄之间的差异。这种差异可以让我们深入了解一个人的整体健康状况以及患年龄相关疾病的可能性。最近的一项研究调查了老年女性EAA 与健康长寿之间的关系,这使其成为第一个探索这种关系的研究。研究概述该研究涉及 1,813 名 70 岁及以上的女性,她们是女性健康倡议 (WHI) 的一部分。 WHI 是一项始于 1993 年的长期研究,旨在确定预防绝经后女性心脏病、骨质疏松症、乳腺癌和结直肠癌的策略。根据健康状况,参与者被分为三组:健康长寿者(活到 90 岁,活动能力和认知功能完好)、活到 90 岁但行动能力和认知功能完好的人,以及未能幸存的人到90岁。表观遗传年龄测量EAA 是使用四个已建立的表观遗传时钟来测量的,该时钟根据基因组中特定位点的 DNA 甲基化水平来估计生物年龄。这些时钟包括 Horvath pantissue、Hannum、Pheno 和 Grim 时钟。 DNA甲基化是参与基因表达和剪接的重要表观遗传机制,这些时钟可以为了解一个人的生物年龄和健康状况提供有价值的见解。  ...

Ergothioneine: A Promising Biomarker Linking Health-Conscious Food Patterns to Reduced Cardiometabolic Disease Risk and Mortality

麦角硫因:一种有前途的生物标志物,将健康意识饮食模式与降低心血管代谢疾病风险和死亡率联系起来

本文讨论了一项基于人群的前瞻性研究,该研究旨在通过长期随访确定与健康饮食模式 ( HCFP ) 相关的血浆代谢物,以及降低心脏代谢发病率和死亡率。研究发现,氨基酸麦角硫因水平的升高与HCFP以及未来冠状动脉疾病( CAD )、心血管和全因死亡风险的降低密切相关。这些发现表明了将饮食与心脏代谢健康联系起来的新途径。   一些与HCFP相关的代谢物此前已与自我报告的特定食物组或项目的摄入量相关。 麦角硫因存在于许多饮食来源中,蘑菇、豆豉和大蒜中的含量特别高。此前人们认为它与蔬菜、海鲜的摄入量较高、固体脂肪和添加糖的摄入量较低以及健康的饮食模式有关。这与关于麦角硫因、蔬菜、海鲜摄入量和HCFP之间关系的研究结果一致。   脯氨酸甜菜碱(又名水苏碱)和甲基脯氨酸都是柑橘类水果摄入量的已知生物标记物,这可以解释本研究中它们与水果摄入量之间的关联。乙酰鸟氨酸与较高的蔬菜摄入量有关,本研究也证实了这一点。泛酸(又名维生素 B5)广泛分布于所有食物组中。相反,尿胆素在本研究中与HCFP显示出负相关性,而之前并未发现其与任何饮食摄入量存在关联。代谢物水平与食物组之间的相关性不大,但麦角硫因与食物组之间的相关系数与之前报告的值相似。尽管马尔默饮食与癌症 (MDC) 研究采用了广泛的饮食抽样方法,但测量不准确性可能会削弱观察到的相关性。   麦角硫因与HCFP具有最强关联,并且与心脏代谢发病率和死亡率具有最明显的保护性关联,独立于传统的风险因素。结果表明,麦角硫因是健康饮食摄入和未来心脏代谢疾病低风险的生物标志物。 麦角硫因已被证明可以保护啮齿动物免受缺血再灌注损伤,并且还被认为是一种对人体具有潜在有益作用的抗氧化剂。 麦角硫因 与其他建议的抗氧化剂不同,它具有一种被认为在炎症区域上调的特定转运蛋白,提供麦角硫因,具有更受控制的抗氧化功能的潜力。 拥有较高水平的麦角硫因 可以以反应的方式防止氧化应激,这被认为是心血管疾病(CVD)发病机制的一个重要因素强>)并可以解释研究结果。   最近在健康人体中进行的一项研究表明,口服麦角硫因可以增加循环麦角硫因的水平,并降低一些氧化损伤生物标志物的水平。需要采用随机治疗方案设计的干预试验来研究这种潜在的抗氧化作用是否可以降低心脏代谢疾病的风险。麦角硫因与酒精摄入量之间的正相关性先前已被证明,这种关联可以通过酒精饮料中存在的麦角硫因或酒精改变麦角硫因的吸收效率来解释存在于其他饮食来源中。   总之,这项研究发现,较高水平的麦角硫因与较低的心脏代谢疾病和死亡风险相关,这表明特定的健康饮食可能通过影响特定的代谢途径和机制来影响这些结果。 麦角硫因与HCFP以及未来CAD 、心血管和全因死亡风险较低之间存在强烈而独立的关联,这凸显了了解饮食摄入导致的分子事件及其与疾病和健康结果的关系的重要性。这些知识将通过确定可通过饮食改变的代谢途径和疾病机制来促进未来的干预研究,从而设计出更有效的饮食干预措施来改善心脏代谢健康。    ...

麦角硫因:一种有前途的生物标志物,将健康意识饮食模式与降低心血管代谢疾病风险和死亡率联系起来

本文讨论了一项基于人群的前瞻性研究,该研究旨在通过长期随访确定与健康饮食模式 ( HCFP ) 相关的血浆代谢物,以及降低心脏代谢发病率和死亡率。研究发现,氨基酸麦角硫因水平的升高与HCFP以及未来冠状动脉疾病( CAD )、心血管和全因死亡风险的降低密切相关。这些发现表明了将饮食与心脏代谢健康联系起来的新途径。   一些与HCFP相关的代谢物此前已与自我报告的特定食物组或项目的摄入量相关。 麦角硫因存在于许多饮食来源中,蘑菇、豆豉和大蒜中的含量特别高。此前人们认为它与蔬菜、海鲜的摄入量较高、固体脂肪和添加糖的摄入量较低以及健康的饮食模式有关。这与关于麦角硫因、蔬菜、海鲜摄入量和HCFP之间关系的研究结果一致。   脯氨酸甜菜碱(又名水苏碱)和甲基脯氨酸都是柑橘类水果摄入量的已知生物标记物,这可以解释本研究中它们与水果摄入量之间的关联。乙酰鸟氨酸与较高的蔬菜摄入量有关,本研究也证实了这一点。泛酸(又名维生素 B5)广泛分布于所有食物组中。相反,尿胆素在本研究中与HCFP显示出负相关性,而之前并未发现其与任何饮食摄入量存在关联。代谢物水平与食物组之间的相关性不大,但麦角硫因与食物组之间的相关系数与之前报告的值相似。尽管马尔默饮食与癌症 (MDC) 研究采用了广泛的饮食抽样方法,但测量不准确性可能会削弱观察到的相关性。   麦角硫因与HCFP具有最强关联,并且与心脏代谢发病率和死亡率具有最明显的保护性关联,独立于传统的风险因素。结果表明,麦角硫因是健康饮食摄入和未来心脏代谢疾病低风险的生物标志物。 麦角硫因已被证明可以保护啮齿动物免受缺血再灌注损伤,并且还被认为是一种对人体具有潜在有益作用的抗氧化剂。 麦角硫因 与其他建议的抗氧化剂不同,它具有一种被认为在炎症区域上调的特定转运蛋白,提供麦角硫因,具有更受控制的抗氧化功能的潜力。 拥有较高水平的麦角硫因 可以以反应的方式防止氧化应激,这被认为是心血管疾病(CVD)发病机制的一个重要因素强>)并可以解释研究结果。   最近在健康人体中进行的一项研究表明,口服麦角硫因可以增加循环麦角硫因的水平,并降低一些氧化损伤生物标志物的水平。需要采用随机治疗方案设计的干预试验来研究这种潜在的抗氧化作用是否可以降低心脏代谢疾病的风险。麦角硫因与酒精摄入量之间的正相关性先前已被证明,这种关联可以通过酒精饮料中存在的麦角硫因或酒精改变麦角硫因的吸收效率来解释存在于其他饮食来源中。   总之,这项研究发现,较高水平的麦角硫因与较低的心脏代谢疾病和死亡风险相关,这表明特定的健康饮食可能通过影响特定的代谢途径和机制来影响这些结果。 麦角硫因与HCFP以及未来CAD 、心血管和全因死亡风险较低之间存在强烈而独立的关联,这凸显了了解饮食摄入导致的分子事件及其与疾病和健康结果的关系的重要性。这些知识将通过确定可通过饮食改变的代谢途径和疾病机制来促进未来的干预研究,从而设计出更有效的饮食干预措施来改善心脏代谢健康。    ...

The Role of Ergothioneine in Aging-Related Diseases: A Closer Look at Its Potential Benefits

麦角硫因在衰老相关疾病中的作用:仔细研究其潜在益处

介绍衰老是一个复杂的过程,会影响我们健康的各个方面,使我们更容易患某些疾病和病症。研究人员一直在研究抗氧化剂和其他化合物在对抗衰老负面影响方面的作用。其中一种化合物麦角硫因 (ERG) 最近因其对衰老相关疾病(如虚弱和痴呆)的潜在益处而受到关注。在本文中,我们将讨论 ERG 在衰老相关疾病中的作用及其可能的治疗应用。什么是麦角硫因(ERG)?麦角硫因 (ERG) 是一种含硫化合物,源自一种称为组氨酸的特定氨基酸。它由某些细菌和真菌合成,存在于各种饮食来源中,包括蘑菇、芸豆和肉类。 ERG 充当抗氧化剂,清除自由基并螯合(结合)导致氧化应激的过渡金属,已知氧化应激在衰老和与年龄相关的疾病中发挥作用。全血、尿液和唾液代谢组学代谢组学是对生物样本(例如血液、尿液和唾液)中的小分子(代谢物)进行研究,以了解生理和病理状况。研究人员一直在使用代谢组学来研究 ERG 和其他化合物在衰老相关疾病中的作用。在人类血液中,ERG 主要存在于红细胞 (RBC) 中,尿液和唾液中的含量要少得多。其他生物体液,如尿液和唾液,也可以提供有关健康的有用信息,因为它们可以轻松无创地收集,并且适合日常观察。   饥饿、ERG 与衰老研究表明,热量限制(CR)或间歇性禁食(IF)可以延长寿命并减少各种生物体的氧化应激。这些益处部分归因于上调抗氧化基因的特定转录因子的激活。裂殖酵母(S. pombe)是研究饥饿对新陈代谢影响的优秀模型生物,因为它与人类细胞有许多相似之处。研究人员观察到,葡萄糖和氮饥饿都会导致粟酒裂殖酵母的 ERG 显着增加。同样,在一项涉及四名年轻、非肥胖人类志愿者禁食 58 小时的小型研究中,研究人员发现,他们血液中的 ERG 和其他抗氧化剂的水平有所增加。这些发现表明,ERG 水平的增加可能是酵母和人类对禁食压力的适应性反应,可能在衰老相关过程中发挥保护作用。 ERG 在衰弱、痴呆和肌肉减少症中的应用虚弱、痴呆和肌肉减少症是常见的与年龄相关的疾病,它们具有共同的临床特征,例如对生命支持的依赖增加。研究人员使用全血代谢组学来研究这些疾病,发现 ERG 水平在虚弱和痴呆症中显着降低,但在肌肉减少症(一种以肌肉质量和功能丧失为特征的疾病)中则没有。此外,ERG 相关化合物中的...

麦角硫因在衰老相关疾病中的作用:仔细研究其潜在益处

介绍衰老是一个复杂的过程,会影响我们健康的各个方面,使我们更容易患某些疾病和病症。研究人员一直在研究抗氧化剂和其他化合物在对抗衰老负面影响方面的作用。其中一种化合物麦角硫因 (ERG) 最近因其对衰老相关疾病(如虚弱和痴呆)的潜在益处而受到关注。在本文中,我们将讨论 ERG 在衰老相关疾病中的作用及其可能的治疗应用。什么是麦角硫因(ERG)?麦角硫因 (ERG) 是一种含硫化合物,源自一种称为组氨酸的特定氨基酸。它由某些细菌和真菌合成,存在于各种饮食来源中,包括蘑菇、芸豆和肉类。 ERG 充当抗氧化剂,清除自由基并螯合(结合)导致氧化应激的过渡金属,已知氧化应激在衰老和与年龄相关的疾病中发挥作用。全血、尿液和唾液代谢组学代谢组学是对生物样本(例如血液、尿液和唾液)中的小分子(代谢物)进行研究,以了解生理和病理状况。研究人员一直在使用代谢组学来研究 ERG 和其他化合物在衰老相关疾病中的作用。在人类血液中,ERG 主要存在于红细胞 (RBC) 中,尿液和唾液中的含量要少得多。其他生物体液,如尿液和唾液,也可以提供有关健康的有用信息,因为它们可以轻松无创地收集,并且适合日常观察。   饥饿、ERG 与衰老研究表明,热量限制(CR)或间歇性禁食(IF)可以延长寿命并减少各种生物体的氧化应激。这些益处部分归因于上调抗氧化基因的特定转录因子的激活。裂殖酵母(S. pombe)是研究饥饿对新陈代谢影响的优秀模型生物,因为它与人类细胞有许多相似之处。研究人员观察到,葡萄糖和氮饥饿都会导致粟酒裂殖酵母的 ERG 显着增加。同样,在一项涉及四名年轻、非肥胖人类志愿者禁食 58 小时的小型研究中,研究人员发现,他们血液中的 ERG 和其他抗氧化剂的水平有所增加。这些发现表明,ERG 水平的增加可能是酵母和人类对禁食压力的适应性反应,可能在衰老相关过程中发挥保护作用。 ERG 在衰弱、痴呆和肌肉减少症中的应用虚弱、痴呆和肌肉减少症是常见的与年龄相关的疾病,它们具有共同的临床特征,例如对生命支持的依赖增加。研究人员使用全血代谢组学来研究这些疾病,发现 ERG 水平在虚弱和痴呆症中显着降低,但在肌肉减少症(一种以肌肉质量和功能丧失为特征的疾病)中则没有。此外,ERG 相关化合物中的...