Nutriop 长寿博客
表观遗传年龄加速及其与老年女性健康长寿的联系
介绍随着世界人口老龄化,了解促进健康老龄化的因素变得越来越重要。引起关注的一个研究领域是表观遗传年龄加速(EAA)的研究。 EAA 是指一个人的生物年龄(通过 DNA 的特定变化来衡量)与其实际年龄之间的差异。这种差异可以让我们深入了解一个人的整体健康状况以及患年龄相关疾病的可能性。最近的一项研究调查了老年女性EAA 与健康长寿之间的关系,这使其成为第一个探索这种关系的研究。研究概述该研究涉及 1,813 名 70 岁及以上的女性,她们是女性健康倡议 (WHI) 的一部分。 WHI 是一项始于 1993 年的长期研究,旨在确定预防绝经后女性心脏病、骨质疏松症、乳腺癌和结直肠癌的策略。根据健康状况,参与者被分为三组:健康长寿者(活到 90 岁,活动能力和认知功能完好)、活到 90 岁但行动能力和认知功能完好的人,以及未能幸存的人到90岁。表观遗传年龄测量EAA 是使用四个已建立的表观遗传时钟来测量的,该时钟根据基因组中特定位点的 DNA 甲基化水平来估计生物年龄。这些时钟包括 Horvath pantissue、Hannum、Pheno 和 Grim 时钟。 DNA甲基化是参与基因表达和剪接的重要表观遗传机制,这些时钟可以为了解一个人的生物年龄和健康状况提供有价值的见解。 研究结果研究发现,通过所有四个时钟测量,EAA 增加与 90 岁以下且活动能力完好的存活率较低相关。当包括完整的认知功能时,结果相似,尽管只有 29 名女性从健康长寿组重新分类到活到 90 岁但活动能力和认知功能不完整的组。有趣的是,该研究还显示,健康长寿的女性更有可能是白人,而不是西班牙裔、大学毕业生、不吸烟者 >,并且身体质量指数 (BMI)在参考范围或超重范围。与其他两组女性相比,她们更有可能定期散步、适量饮酒,并且患有较少的主要慢性病。与之前的研究比较很少有研究探讨 EAA 与健康长寿之间的联系。对来自哥斯达黎加的 48 名长寿尼科亚人和 47 名非尼科亚人进行的一项小型研究发现,两组之间的 EAA 没有显着差异。然而,样本量较小限制了该研究检测更细微差异的能力。其他研究调查了 EAA 与老年人身体和认知功能之间的关联,但没有专门针对长寿个体。这些研究普遍发现,较高的...
释放 NMN 的潜力:动物研究如何证明其在与年龄相关的疾病中改善视力和听力的能力
随着年龄的增长,我们的身体开始恶化,导致各种与年龄相关的疾病。衰老最常见的情况之一是细胞衰老,这可能导致视力和听力下降。 目前,有一些治疗方法可以帮助减缓这些疾病的进展,但并不总是有效。然而,最近的研究表明,一种称为烟酰胺单核苷酸(NMN)的化合物可能是改善受年龄相关疾病影响的人的视力和听力的关键。NMN 是一种天然存在的化合物,具有神经保护作用,可以改善整体生理功能。 在本文中,我们将探讨 NMN 作为治疗年龄相关疾病的潜力,特别是在改善视力和听力方面。我们还将讨论这些疾病的治疗现状及其局限性。 年龄相关疾病和细胞衰老的背景 与年龄相关的疾病,也称为老年疾病,是一组主要发生在老年人中的疾病。这些疾病是由遗传和环境因素共同引起的,其中最重要的因素是衰老过程本身。 与年龄相关的疾病的主要原因之一是细胞衰老,其特点是细胞逐渐退化及其正常功能的能力下降。影响视力的最常见的年龄相关疾病之一是年龄相关性黄斑变性 (AMD),它是 60 岁以上人群失明的主要原因。 同样,与年龄相关的听力损失也是影响老年人的常见病症。这两种情况都会严重影响一个人的生活质量和独立性。目前,与年龄相关疾病的主要治疗方法集中于减缓病情的进展和控制症状。 然而,这些治疗方法有时有效,并且可能产生多种副作用。此外,还需要更多的治疗方法来真正改善细胞功能并逆转细胞衰老的影响。 NMN 整体生理功能 NMN 是一种天然存在的化合物,具有神经保护作用,可以改善整体生理功能。 它是烟酰胺腺嘌呤二核苷酸 (NAD+) 的前体,而烟酰胺腺嘌呤二核苷酸是一种辅酶,在能量代谢和细胞信号传导中发挥着关键作用。 随着年龄的增长,NAD+ 水平下降,导致细胞功能下降。研究发现 NMN 可以提高 NAD+ 水平,从而改善细胞功能并预防与年龄相关的疾病。最近的一项研究发现,在 12 个月内给小鼠施用 NAD+ 中间体烟酰胺单核苷酸 (NMN) 可有效缓解与年龄相关的生理衰退 (3)。 研究发现,口服 NMN 可以快速在小鼠组织中合成 NAD+,从而抑制与年龄相关的体重增加、增强能量代谢、改善体力活动、改善胰岛素敏感性和血脂状况以及改善眼功能等。 。 该研究表明 NAD+ 中间体,例如 NMN,有可能成为人类有效的抗衰老干预措施。 NMN 改善视力 最近的研究表明,NMN...
遗传学、长寿和癌症——当前研究发现了令人惊讶的发现
每个人都熟悉不同哺乳动物的体型和寿命差异很大。一只体重不到一盎司的老鼠只能活 12 到 18 个月。雄性大象的体重可达 13,000 磅,平均寿命为 60 至 70 年。蓝鲸使大象相形见绌,体重超过 40 万磅,寿命可达 80 至 90 年。 所有动物,无论大小,以及人类,都会定期获得所谓的体细胞突变,这种突变发生在生物体的整个生命周期中。这些体细胞突变是动物生殖细胞以外的细胞中的遗传变化,人类每年会积累大约 20 到 50 个此类突变。 虽然大多数突变是无害的,但其中一些突变会影响细胞的正常功能,甚至引发细胞癌变。几十年来,研究人员一直相信这些突变一定也在衰老中发挥着作用,但没有技术手段来研究它们。该技术现已到位,使科学家能够观察正常细胞中的这些体细胞突变。 佩托悖论 但除了体细胞突变在衰老中可能发挥的作用之外,研究人员还有另一个关于癌症发展的未解之谜,即皮托悖论。 这个悖论是这样的:癌症是从单细胞发展而来的。因此,较大的动物(例如大象)比较小的动物(例如小鼠)拥有更多的细胞,理论上应该具有更高的癌症风险。 只是他们不这样做。不同动物的癌症发病率完全与其体型无关。科学家推测,不知何故,较大的动物已经进化出了某种机制,这样它们就不会以仅根据其体型所预期的速度患上癌症。可能解释这一点的理论之一是,体型较大的动物细胞中体细胞突变的积累率较低,但到目前为止,这一点还无法得到测试。 在 2022 年 4 月 13 日发表在著名杂志《自然》上的一项新研究中,科学家检查了 16 个不同物种的细胞:黑白疣猴、猫、牛、狗、雪貂、长颈鹿、港湾鼠海豚、马、人类、狮子、老鼠、裸鼹鼠、兔子、老鼠、环尾狐猴和老虎。研究人员发现,尽管不同的动物物种在体型和寿命上存在巨大差异,但当它们到达自然生命的终点时,它们都具有相似数量的体细胞突变。 研究人员还发现了与寿命相关的其他东西,这证实了他们之前的怀疑。动物的寿命越长,这些体细胞突变发生的速度就越慢。这表明科学家们几十年来关于体细胞突变在衰老过程中发挥作用的猜测是正确的。 但在科学家考虑了寿命之后,发现动物的体型大小和体细胞突变率之间没有关联,这使得研究人员推测,相对于体型而言,较大动物的癌症风险降低还有其他因素在起作用。 衰老和基因变化 衰老是一个复杂且多因素的生物过程,并且以体细胞突变形式积累的遗传变化并不是所发生的全部。细胞和身体组织可能会以许多其他方式受到损害,包括细胞内外错误折叠蛋白质的积累,以及由于环境影响而发生的表观遗传变化。 表观遗传变化实际上不会导致细胞 DNA 的变化,但可以通过改变身体“读取”特定 DNA 序列的方式来影响基因的工作方式。其他表观遗传变化可以阻止基因表达,因此,这些基因编码的蛋白质永远不会产生。癌症和基因变化 来自剑桥大学 Wellcome Sanger 研究所和...
亚精胺及其对人类健康和福祉的影响
1677 年,安东尼·范·列文虎克 (Antony Van Leeuwenhoek),一位受过中等教育的荷兰人,也是一位谦逊的纺织企业主,通过精心制作的高倍显微镜镜头进行观察,并得到了惊人的发现。出于无尽的好奇,列文虎克已经利用他自制的镜头做出了许多突破性的发现,包括单细胞动物和植物以及细菌的存在。 但在 1678 年的这一天,在同事的敦促下,他相当不情愿地决定将自己的精液样本放在镜头下,并惊讶地看到微小的、蠕动的“动物”(他称之为“动物”)在他的注视下游动。一年后,即 1679 年,列文虎克发现精液中存在微观晶体。 但直到 1888 年,这些晶体才被命名为“精胺”,直到 1926 年,正确的化学结构才被确定,这种化合物和其他类似的化合物(称为多胺)才从微生物、动物中分离出来。器官、植物。在化学上,聚胺是一组结构中具有两个或多个氨基的小分子。 亚精胺与所有多胺一样,对细胞分裂和生长很重要。这些化合物刚刚开始展现其多重功效,亚精胺成为衰老、认知能力下降、糖尿病、癌症等新疗法和预防药物前沿的明星。 让我们仔细看看亚精胺影响人类健康的具体方式。然后我们将了解哪些食物含有亚精胺,仅靠饮食无法为您提供足够的这种重要化合物,尤其是随着年龄的增长,然后在考虑补充亚精胺时应注意什么。 由于亚精胺对许多不同的健康状况具有积极影响,因此我们期望找到一些可能解释这一点的潜在生物学途径。目前的研究指出亚精胺似乎在许多领域发挥其强大作用的三种主要方式:自噬、抗炎作用以及作为热量限制模拟分子...... 亚精胺与自噬 首先,我们来了解一下自噬。该术语本身源自古希腊语αὐτόφαγος autóphagos。第一个“autó”表示“自我”,“phagos”表示“吃”。从字面上看,这个词的意思是“自食”。当身体细胞度过其生命周期时,它们会积累细胞碎片,包括陈旧的、受损的、畸形的或其他异常的蛋白质。自噬是一种自然发生的有序过程,可以清除这些受损或功能失调的成分。 尽管已经确定了四种不同形式的自噬,但研究最多和理解最多的类型是巨自噬,其中受损的细胞成分被分离出来,然后被细胞内称为自噬体的双膜囊泡隔离。自噬体收集受损成分后,会与可用的溶酶体融合,溶酶体是细胞内的一种膜结合细胞器,含有水解酶,可以分解许多不同种类的生物分子。自噬的减少与许多与衰老相关的疾病有关。自噬是细胞关键部分再生的最重要机制,因此具有巨大的抗衰老潜力,有可能延缓与年龄相关的疾病和死亡。 亚精胺是一种自噬激活剂,主要通过抑制一组称为乙酰转移酶的酶来发挥作用。这些酶,特别是组蛋白乙酰转移酶,被称为“表观基因组的主力”,在实际基因表达的表观遗传调控中发挥着非常重要的作用。 亚精胺作为抗炎药 随着衰老,慢性炎症似乎不可避免地增加。包括亚精胺在内的多胺水平在炎症期间增加,并刺激抗炎细胞因子的产生,同时减少促炎细胞因子的产生。细胞因子是在免疫反应中活跃的小蛋白质,并发出细胞运动至炎症、感染或创伤部位的信号。最近的研究表明,亚精胺还可以增强巨噬细胞的抗炎特性,巨噬细胞是一种专门的免疫细胞,可以检测和消灭细菌和其他有害生物。 亚精胺作为卡路里限制模拟物 热量限制和各种禁食方案是极少数经过验证的生活方式干预措施,可以明确延长许多生物体的寿命并改善健康,包括啮齿类动物模型以及非人类灵长类动物。但尽管间歇性禁食在过去几年中在许多健康和保健圈子中变得流行,但绝大多数人不愿意或无法彻底改变他们的饮食方式,尤其是在很长一段时间内。模拟热量限制效应的化合物(称为热量限制模拟物或 CRM)是很有吸引力的策略。亚精胺绝对符合 CRM 的定义,并且正在成为这一角色的主要竞争者。尽管禁食和热量限制的许多好处可能归因于自噬的增加,但自噬之外似乎还有其他机制可以解释亚精胺对衰老的积极作用。这些包括亚精胺本身的直接抗氧化作用,以及对精氨酸生物利用度和一氧化氮产生的代谢影响。精氨酸是一种用于蛋白质生物合成的氨基酸,一氧化氮会引起血管舒张,血管内壁肌肉松弛,从而使血管扩张并改善循环。 亚精胺及其在健康和福祉中的作用 现在我们已经研究了亚精胺作为自噬激活剂、抗炎剂和卡路里限制模拟物的作用,让我们更仔细地了解亚精胺对衰老、认知能力下降和癌症的影响,这可以说是最令人烦恼和代价最高的三种健康问题我们作为人类面临的问题。此外,我们还将关注一些研究,该研究表明亚精胺可能成为一种有效的抗病毒药物,甚至可以对抗 SARS-CoV-2 感染。 亚精胺与衰老研究表明,补充亚精胺可以延长许多模型生物的寿命,包括酵母、线虫、果蝇和啮齿动物。最近还有数据表明,增加膳食中亚精胺的供应不仅可以降低人类总体死亡率,还可以降低心血管和癌症相关的死亡人数。 亚精胺与认知SmartAge 是首个关于亚精胺对神经退行性疾病影响的人体试验,是一项由柏林 Charitè Universitätsmedizin 进行的随机、双盲、安慰剂对照研究,该研究于 2018 年启动,当时欧盟裁定第一种富含亚精胺的植物提取物为合法可用。 为期三个月的试验阶段的结果令人印象深刻,其中一组认知能力下降的老年参与者接受了富含亚精胺的植物提取物或安慰剂。在为期三个月的试验开始和结束时,对参与者的记忆力进行了评估。即使试验时间很短,结果也是积极的,服用富含亚精胺提取物的参与者显示出记忆力有所改善,而安慰剂对照组的记忆力没有变化。...
表观遗传时钟作为年龄预测因子:它们的历史、优势和局限性
我们非常清楚,老年是癌症、心血管疾病和神经退行性疾病的主要危险因素。令人沮丧的是,由于预测患者生物衰老速度的工具可靠性较差,衰老研究的进展被推迟了很多年。为了更好地了解衰老过程并制定干预措施,抗衰老领域需要更有效的系统来测量生物年龄。 输入表观遗传时钟。这些基于 DNA 甲基化 (DNAm) 的年龄预测因子在过去十年左右的时间里逐渐受到重视,为更多定量研究铺平了道路。新的时钟和应用程序(包括取证)经常发布。它们代表了真正的突破,即使表观遗传时钟捕获的衰老的精确方面仍不清楚。让我们研究一下当今可用的一些表观遗传时钟,并总结它们的优点和缺点。因此,DNAm 已成为预测生物年龄的最有效的生物标志物之一。表观遗传时钟(也称为 DNAm 年龄预测因子)是使用随年龄变化的 CpG(DNA 区域)开发的。大多数时钟都是使用惩罚回归模型构建的,该模型有助于研究人员选择相关的 CpG 组。然后使用时钟根据关键 CpG 位点的甲基化百分比来估计实际年龄。改进和新发现正在迅速涌现。 年龄加速 让我们首先看看年龄加速,它指的是表观遗传年龄(eAge)和实际年龄(chAge)之间的差异。这与一些与年龄有关的状况有关。例如,患有肥胖症、唐氏综合症、亨廷顿舞蹈症、索托斯综合症和沃纳综合症的患者往往会表现出加速衰老的趋势。 eAge 加速也与身体和认知健康有关。表观遗传衰老率的变化因性别和种族背景而异。 维生素 D 充足的人的 eAge 加速度较低,白细胞端粒 (LTL) 较长。吸烟与气道细胞和肺组织的 eAge 升高有关(分别延长 4.9 和 4.3 年)。此外,研究人员还发现,怀孕期间吸烟可能会对后代的 eAge 产生不利影响。新的发现不断出现,但很明显,表观遗传时钟已经证明自己在预测生物年龄方面是准确的。 时钟设计的早期 与后来的版本相比,第一个表观遗传时钟在其训练数据集中包含相对较少的 CpG 位点和样本。早期研究人员利用 68 个样本(34 对双胞胎)创建了一个时钟,可以通过唾液预测年龄,平均准确度为 5.2 年。初步研究结束后,表观遗传时钟在样本、组织和 CpG 数量方面变得越来越复杂。 第一个多组织年龄预测器——Horvath 或泛组织时钟——使用了 353 个...