Nutriop 长寿博客

Epigenetic Age Acceleration and Its Link to Healthy Longevity in Older Women

表观遗传年龄加速及其与老年女性健康长寿的联系

介绍随着世界人口老龄化,了解促进健康老龄化的因素变得越来越重要。引起关注的一个研究领域是表观遗传年龄加速(EAA)的研究。 EAA 是指一个人的生物年龄(通过 DNA 的特定变化来衡量)与其实际年龄之间的差异。这种差异可以让我们深入了解一个人的整体健康状况以及患年龄相关疾病的可能性。最近的一项研究调查了老年女性EAA 与健康长寿之间的关系,这使其成为第一个探索这种关系的研究。研究概述该研究涉及 1,813 名 70 岁及以上的女性,她们是女性健康倡议 (WHI) 的一部分。 WHI 是一项始于 1993 年的长期研究,旨在确定预防绝经后女性心脏病、骨质疏松症、乳腺癌和结直肠癌的策略。根据健康状况,参与者被分为三组:健康长寿者(活到 90 岁,活动能力和认知功能完好)、活到 90 岁但行动能力和认知功能完好的人,以及未能幸存的人到90岁。表观遗传年龄测量EAA 是使用四个已建立的表观遗传时钟来测量的,该时钟根据基因组中特定位点的 DNA 甲基化水平来估计生物年龄。这些时钟包括 Horvath pantissue、Hannum、Pheno 和 Grim 时钟。 DNA甲基化是参与基因表达和剪接的重要表观遗传机制,这些时钟可以为了解一个人的生物年龄和健康状况提供有价值的见解。  ...

表观遗传年龄加速及其与老年女性健康长寿的联系

介绍随着世界人口老龄化,了解促进健康老龄化的因素变得越来越重要。引起关注的一个研究领域是表观遗传年龄加速(EAA)的研究。 EAA 是指一个人的生物年龄(通过 DNA 的特定变化来衡量)与其实际年龄之间的差异。这种差异可以让我们深入了解一个人的整体健康状况以及患年龄相关疾病的可能性。最近的一项研究调查了老年女性EAA 与健康长寿之间的关系,这使其成为第一个探索这种关系的研究。研究概述该研究涉及 1,813 名 70 岁及以上的女性,她们是女性健康倡议 (WHI) 的一部分。 WHI 是一项始于 1993 年的长期研究,旨在确定预防绝经后女性心脏病、骨质疏松症、乳腺癌和结直肠癌的策略。根据健康状况,参与者被分为三组:健康长寿者(活到 90 岁,活动能力和认知功能完好)、活到 90 岁但行动能力和认知功能完好的人,以及未能幸存的人到90岁。表观遗传年龄测量EAA 是使用四个已建立的表观遗传时钟来测量的,该时钟根据基因组中特定位点的 DNA 甲基化水平来估计生物年龄。这些时钟包括 Horvath pantissue、Hannum、Pheno 和 Grim 时钟。 DNA甲基化是参与基因表达和剪接的重要表观遗传机制,这些时钟可以为了解一个人的生物年龄和健康状况提供有价值的见解。  ...

Epigenetic Clocks as Age Predictors: Their History, Strengths, and Limitations

表观遗传时钟作为年龄预测因子:它们的历史、优势和局限性

我们非常清楚,老年是癌症、心血管疾病和神经退行性疾病的主要危险因素。令人沮丧的是,由于预测患者生物衰老速度的工具可靠性较差,衰老研究的进展被推迟了很多年。为了更好地了解衰老过程并制定干预措施,抗衰老领域需要更有效的系统来测量生物年龄。  输入表观遗传时钟。这些基于 DNA 甲基化 (DNAm) 的年龄预测因子在过去十年左右的时间里逐渐受到重视,为更多定量研究铺平了道路。新的时钟和应用程序(包括取证)经常发布。它们代表了真正的突破,即使表观遗传时钟捕获的衰老的精确方面仍不清楚。让我们研究一下当今可用的一些表观遗传时钟,并总结它们的优点和缺点。因此,DNAm 已成为预测生物年龄的最有效的生物标志物之一。表观遗传时钟(也称为 DNAm 年龄预测因子)是使用随年龄变化的 CpG(DNA 区域)开发的。大多数时钟都是使用惩罚回归模型构建的,该模型有助于研究人员选择相关的 CpG 组。然后使用时钟根据关键 CpG 位点的甲基化百分比来估计实际年龄。改进和新发现正在迅速涌现。 年龄加速   让我们首先看看年龄加速,它指的是表观遗传年龄(eAge)和实际年龄(chAge)之间的差异。这与一些与年龄有关的状况有关。例如,患有肥胖症、唐氏综合症、亨廷顿舞蹈症、索托斯综合症和沃纳综合症的患者往往会表现出加速衰老的趋势。 eAge 加速也与身体和认知健康有关。表观遗传衰老率的变化因性别和种族背景而异。  维生素 D 充足的人的 eAge 加速度较低,白细胞端粒 (LTL) 较长。吸烟与气道细胞和肺组织的 eAge 升高有关(分别延长 4.9...

表观遗传时钟作为年龄预测因子:它们的历史、优势和局限性

我们非常清楚,老年是癌症、心血管疾病和神经退行性疾病的主要危险因素。令人沮丧的是,由于预测患者生物衰老速度的工具可靠性较差,衰老研究的进展被推迟了很多年。为了更好地了解衰老过程并制定干预措施,抗衰老领域需要更有效的系统来测量生物年龄。  输入表观遗传时钟。这些基于 DNA 甲基化 (DNAm) 的年龄预测因子在过去十年左右的时间里逐渐受到重视,为更多定量研究铺平了道路。新的时钟和应用程序(包括取证)经常发布。它们代表了真正的突破,即使表观遗传时钟捕获的衰老的精确方面仍不清楚。让我们研究一下当今可用的一些表观遗传时钟,并总结它们的优点和缺点。因此,DNAm 已成为预测生物年龄的最有效的生物标志物之一。表观遗传时钟(也称为 DNAm 年龄预测因子)是使用随年龄变化的 CpG(DNA 区域)开发的。大多数时钟都是使用惩罚回归模型构建的,该模型有助于研究人员选择相关的 CpG 组。然后使用时钟根据关键 CpG 位点的甲基化百分比来估计实际年龄。改进和新发现正在迅速涌现。 年龄加速   让我们首先看看年龄加速,它指的是表观遗传年龄(eAge)和实际年龄(chAge)之间的差异。这与一些与年龄有关的状况有关。例如,患有肥胖症、唐氏综合症、亨廷顿舞蹈症、索托斯综合症和沃纳综合症的患者往往会表现出加速衰老的趋势。 eAge 加速也与身体和认知健康有关。表观遗传衰老率的变化因性别和种族背景而异。  维生素 D 充足的人的 eAge 加速度较低,白细胞端粒 (LTL) 较长。吸烟与气道细胞和肺组织的 eAge 升高有关(分别延长 4.9...