Nutriop 长寿博客
槲皮素:对抗年龄相关疾病的秘密武器
槲皮素:天然动力源 槲皮素是一种植物次生代谢产物,是一种天然存在于植物不同部位的化合物。它是人类饮食的基本成分,但它在我们膳食中的存在常常被忽视。这种化合物以其抗氧化特性而闻名,并具有抗衰老的保护作用。这种类黄酮由三个苯环和五个羟基组成,其结构中缺乏糖部分,使其成为类黄酮家族的独特成员。槲皮素经常用于人类饮食中,以其抗氧化、抗炎和抗增殖特性而闻名。它还具有抗糖尿病、抗癌和抗微生物特性。尽管槲皮素代谢迅速且在血液中的半衰期较短,但它在对抗与年龄相关的疾病方面已显示出潜力。其亲脂性使其能够轻松穿过血脑屏障并表现出神经保护活性。槲皮素:抗氧化能力由于酚基和双键的存在,槲皮素显示出潜在的抗氧化活性。已知该分子是类黄酮中自由基的有效清除剂。槲皮素具有抗氧化和促氧化特性。它维持身体的氧化还原平衡,并增加 SOD、CAT 和 GSH 的表达。这些酶对于身体防御氧化应激至关重要,氧化应激通常与年龄相关的疾病有关。槲皮素和神经退行性疾病在神经退行性疾病领域,槲皮素显示出预防和可能延缓神经退行性疾病过程的潜力。它通过下调促炎细胞因子、刺激神经元再生和减少脂质过氧化来抑制神经炎症过程,从而防止神经元氧化损伤。阿尔茨海默氏症和帕金森氏症等神经退行性疾病的特征是神经元结构或功能逐渐丧失,包括死亡。这些疾病通常是使人衰弱且无法治愈的疾病,导致神经细胞进行性退化和/或死亡,从而导致运动(共济失调)或心理功能(痴呆)问题。槲皮素具有穿过血脑屏障、抑制神经炎症过程、刺激神经元再生和防止神经元氧化损伤的能力,使其成为对抗这些疾病的有前景的化合物。槲皮素和糖尿病在糖尿病方面,槲皮素由于其抗氧化、抗炎、降血糖和降血脂活性,已知可参与 2 型糖尿病的治疗。它可以降低糖尿病大鼠和小鼠模型的血糖浓度,保留胰岛细胞的功能,并增加 β 细胞的数量。糖尿病是一种慢性疾病,当胰腺不能产生足够的胰岛素,或者身体不能有效地利用其产生的胰岛素时,就会发生糖尿病。这会导致血液中葡萄糖浓度增加(高血糖)。槲皮素具有调节血糖水平、减少肝脏脂肪沉积和减轻肾纤维化严重程度的能力,使其成为对抗糖尿病的一种有前景的化合物。槲皮素和癌症在对抗癌症方面,槲皮素已显示出希望。各种体外和体内研究表明,槲皮素具有抗癌活性,可作为癌症治疗中的可靠药物。它作为抗炎分子发挥着至关重要的作用,抑制促炎细胞因子(如 IL-6、TNF-α、IL-1β)以及炎症介质(如过氧化氢酶和一氧化氮)的作用。癌症是一组以异常细胞不受控制的生长和扩散为特征的疾病。有超过 100 种癌症,包括乳腺癌、皮肤癌、肺癌、结肠癌、前列腺癌和淋巴瘤。症状因类型而异。癌症治疗可包括化疗、放疗和/或手术。槲皮素具有抑制肿瘤生长的能力,以及其抗氧化和促氧化特性(取决于其浓度),使其成为抗击癌症的潜在盟友。槲皮素和炎症炎症是身体组织对有害刺激(例如病原体、受损细胞或刺激物)的生物反应。这是一种涉及免疫细胞、血管和分子介质的保护性反应。炎症的功能是消除细胞损伤的最初原因,清除因原始损伤和炎症过程而受损的坏死细胞和组织,并启动组织修复。槲皮素的抗炎特性已被证明可以下调促炎细胞因子,使其成为对抗炎症性疾病的潜在药物。慢性炎症可导致多种疾病,如心脏病、癌症和自身免疫性疾病。通过抑制促炎细胞因子(如 IL-6、TNF-α、IL-1β)以及炎症介质(如过氧化氢酶和一氧化氮)的作用,槲皮素可能有助于控制和预防这些疾病。Nutriop 长寿:发挥槲皮素的功效既然您了解了槲皮素的引人注目的好处,您的下一个问题可能是“如何将槲皮素纳入我的健康养生法?”我们 Nutriop Longevity 可以为您提供答案。我们的尖端配方 - 白藜芦醇 PLUS+是一种独特的天然化合物混合物,具有惊人的健康益处。这种补充剂旨在将您的健康和长寿提升到一个新的水平。白藜芦醇 PLUS+ 的优点白藜芦醇长期以来一直是健康和保健领域的一颗闪亮的明星。白藜芦醇是一种强效抗氧化剂,存在于红葡萄皮和某些浆果中,因其具有一系列健康益处而受到喜爱,包括延长寿命、心血管健康和抗衰老作用。 Nutriop Longevity 通过将白藜芦醇与纯槲皮素、非瑟酮、姜黄素和胡椒碱的强效组合进行协同作用,增强了白藜芦醇的功效,每种成分都带来了一系列独特的益处。这种组合可以协同作用,对抗与年龄相关的疾病并促进健康。释放槲皮素的力量我们已经在这篇文章中赞扬了槲皮素,这是有充分理由的。槲皮素是一种强大的抗氧化剂和抗炎化合物,已知可以预防衰老和许多与年龄相关的疾病。槲皮素与白藜芦醇合作,提供了一种全面的健康和长寿方法。漆黄素:鲜为人知的宝石非瑟酮是一种存在于许多水果和蔬菜中的类黄酮,是一种鲜为人知的宝石,最近因其强大的抗衰老特性而受到关注。非瑟酮有助于维持细胞健康,初步研究表明它可以在细胞水平上减缓衰老过程,这一过程称为衰老。通过减轻衰老的有害影响,非瑟酮可能有助于长寿并减少与年龄相关的健康问题。姜黄素:黄金香料姜黄素是姜黄中的主要生物活性化合物,因其对健康的益处而备受赞誉。这种金色化合物具有强大的抗炎和抗氧化特性,有助于心脏、大脑、关节等的健康。此外,它还可以防止氧化应激和炎症,这是与年龄相关的疾病发作的两个关键罪魁祸首。胡椒碱:吸收促进剂胡椒碱是黑胡椒中发现的一种生物碱,在这种混合物中发挥着重要作用,可提高其他成分的生物利用度。虽然它的健康益处显而易见,但它在白藜芦醇 PLUS+ 中最重要的作用是能够增加白藜芦醇、槲皮素、非瑟酮和姜黄素的吸收,确保您从每份服务中获得最大的益处。众人瞩目:白藜芦醇 PLUS+Resveratrol PLUS+不仅仅是一种补充剂,它还是一种精心设计的长寿工具。每种成分都经过精心挑选,具有独特的功效和协同作用。这些成分共同作用,使您的身体能够抵抗与年龄相关的疾病、炎症和氧化应激,从而促进健康和长寿。一项名为“ 槲皮素对与年龄相关疾病的健康益处”的有趣研究揭示了槲皮素在减缓衰老及其相关疾病方面的惊人潜力,增强了我们的白藜芦醇 PLUS+的价值。然而,正是这五种强效成分的组合让白藜芦醇 PLUS+ 脱颖而出,将整体健康的概念带入生活。服用白藜芦醇PLUS+作为您健康养生的一部分,就像任命一支超级英雄团队,每个人都有其独特的超能力,来保护您的健康。就像超级英雄团队一样,白藜芦醇 PLUS+ 中的每种成分都会增强其他成分的力量,从而增强健康益处并促进您的长寿之旅。槲皮素的未来虽然槲皮素的健康益处令人鼓舞,但还需要更多的研究来充分了解其潜力。未来的研究可能会探索槲皮素的纳米制剂和脂质体制剂来治疗其他与年龄相关的疾病。当我们继续探索这种化合物的好处时,很明显,大自然仍然对我们的健康和福祉保有许多秘密。结论槲皮素是一种天然存在的多酚,有望成为预防各种与年龄相关的疾病的保护剂。它的抗氧化、抗炎和抗癌等特性使其成为促进健康和长寿的潜在动力。当我们继续探索这种化合物的好处时,很明显,大自然仍然对我们的健康和福祉保有许多秘密。因此,下次您享用富含水果和蔬菜的膳食时,请记住您还摄入了槲皮素,它是对抗年龄相关疾病的强大盟友 .
麦角硫因:一种有前途的生物标志物,将健康意识饮食模式与降低心血管代谢疾病风险和死亡率联系起来
本文讨论了一项基于人群的前瞻性研究,该研究旨在通过长期随访确定与健康饮食模式 ( HCFP ) 相关的血浆代谢物,以及降低心脏代谢发病率和死亡率。研究发现,氨基酸麦角硫因水平的升高与HCFP以及未来冠状动脉疾病( CAD )、心血管和全因死亡风险的降低密切相关。这些发现表明了将饮食与心脏代谢健康联系起来的新途径。 一些与HCFP相关的代谢物此前已与自我报告的特定食物组或项目的摄入量相关。 麦角硫因存在于许多饮食来源中,蘑菇、豆豉和大蒜中的含量特别高。此前人们认为它与蔬菜、海鲜的摄入量较高、固体脂肪和添加糖的摄入量较低以及健康的饮食模式有关。这与关于麦角硫因、蔬菜、海鲜摄入量和HCFP之间关系的研究结果一致。 脯氨酸甜菜碱(又名水苏碱)和甲基脯氨酸都是柑橘类水果摄入量的已知生物标记物,这可以解释本研究中它们与水果摄入量之间的关联。乙酰鸟氨酸与较高的蔬菜摄入量有关,本研究也证实了这一点。泛酸(又名维生素 B5)广泛分布于所有食物组中。相反,尿胆素在本研究中与HCFP显示出负相关性,而之前并未发现其与任何饮食摄入量存在关联。代谢物水平与食物组之间的相关性不大,但麦角硫因与食物组之间的相关系数与之前报告的值相似。尽管马尔默饮食与癌症 (MDC) 研究采用了广泛的饮食抽样方法,但测量不准确性可能会削弱观察到的相关性。 麦角硫因与HCFP具有最强关联,并且与心脏代谢发病率和死亡率具有最明显的保护性关联,独立于传统的风险因素。结果表明,麦角硫因是健康饮食摄入和未来心脏代谢疾病低风险的生物标志物。 麦角硫因已被证明可以保护啮齿动物免受缺血再灌注损伤,并且还被认为是一种对人体具有潜在有益作用的抗氧化剂。 麦角硫因 与其他建议的抗氧化剂不同,它具有一种被认为在炎症区域上调的特定转运蛋白,提供麦角硫因,具有更受控制的抗氧化功能的潜力。 拥有较高水平的麦角硫因 可以以反应的方式防止氧化应激,这被认为是心血管疾病(CVD)发病机制的一个重要因素强>)并可以解释研究结果。 最近在健康人体中进行的一项研究表明,口服麦角硫因可以增加循环麦角硫因的水平,并降低一些氧化损伤生物标志物的水平。需要采用随机治疗方案设计的干预试验来研究这种潜在的抗氧化作用是否可以降低心脏代谢疾病的风险。麦角硫因与酒精摄入量之间的正相关性先前已被证明,这种关联可以通过酒精饮料中存在的麦角硫因或酒精改变麦角硫因的吸收效率来解释存在于其他饮食来源中。 总之,这项研究发现,较高水平的麦角硫因与较低的心脏代谢疾病和死亡风险相关,这表明特定的健康饮食可能通过影响特定的代谢途径和机制来影响这些结果。 麦角硫因与HCFP以及未来CAD 、心血管和全因死亡风险较低之间存在强烈而独立的关联,这凸显了了解饮食摄入导致的分子事件及其与疾病和健康结果的关系的重要性。这些知识将通过确定可通过饮食改变的代谢途径和疾病机制来促进未来的干预研究,从而设计出更有效的饮食干预措施来改善心脏代谢健康。 参考: 1. Smith E、Ottosson F、Hellstrand S 等人麦角硫因与降低死亡率和心血管疾病风险相关Heart 2020;106:691-697。
麦角硫因在衰老相关疾病中的作用:仔细研究其潜在益处
介绍衰老是一个复杂的过程,会影响我们健康的各个方面,使我们更容易患某些疾病和病症。研究人员一直在研究抗氧化剂和其他化合物在对抗衰老负面影响方面的作用。其中一种化合物麦角硫因 (ERG) 最近因其对衰老相关疾病(如虚弱和痴呆)的潜在益处而受到关注。在本文中,我们将讨论 ERG 在衰老相关疾病中的作用及其可能的治疗应用。什么是麦角硫因(ERG)?麦角硫因 (ERG) 是一种含硫化合物,源自一种称为组氨酸的特定氨基酸。它由某些细菌和真菌合成,存在于各种饮食来源中,包括蘑菇、芸豆和肉类。 ERG 充当抗氧化剂,清除自由基并螯合(结合)导致氧化应激的过渡金属,已知氧化应激在衰老和与年龄相关的疾病中发挥作用。全血、尿液和唾液代谢组学代谢组学是对生物样本(例如血液、尿液和唾液)中的小分子(代谢物)进行研究,以了解生理和病理状况。研究人员一直在使用代谢组学来研究 ERG 和其他化合物在衰老相关疾病中的作用。在人类血液中,ERG 主要存在于红细胞 (RBC) 中,尿液和唾液中的含量要少得多。其他生物体液,如尿液和唾液,也可以提供有关健康的有用信息,因为它们可以轻松无创地收集,并且适合日常观察。 饥饿、ERG 与衰老研究表明,热量限制(CR)或间歇性禁食(IF)可以延长寿命并减少各种生物体的氧化应激。这些益处部分归因于上调抗氧化基因的特定转录因子的激活。裂殖酵母(S. pombe)是研究饥饿对新陈代谢影响的优秀模型生物,因为它与人类细胞有许多相似之处。研究人员观察到,葡萄糖和氮饥饿都会导致粟酒裂殖酵母的 ERG 显着增加。同样,在一项涉及四名年轻、非肥胖人类志愿者禁食 58 小时的小型研究中,研究人员发现,他们血液中的 ERG 和其他抗氧化剂的水平有所增加。这些发现表明,ERG 水平的增加可能是酵母和人类对禁食压力的适应性反应,可能在衰老相关过程中发挥保护作用。 ERG 在衰弱、痴呆和肌肉减少症中的应用虚弱、痴呆和肌肉减少症是常见的与年龄相关的疾病,它们具有共同的临床特征,例如对生命支持的依赖增加。研究人员使用全血代谢组学来研究这些疾病,发现 ERG 水平在虚弱和痴呆症中显着降低,但在肌肉减少症(一种以肌肉质量和功能丧失为特征的疾病)中则没有。此外,ERG 相关化合物中的 S-甲基-ERG 和海西宁在衰弱和痴呆症中也有所减少。这一发现表明 ERG 的摄入或代谢可能在这些情况下受到影响。 ERG(一种有效的抗氧化剂)的减少可能会导致虚弱、痴呆和其他衰老相关事件的进展,因为已知氧化损伤会加速这些疾病。研究人员还分析了尿液和唾液代谢组学,以更全面地了解与衰老相关的疾病。他们发现这些生物液中的 ERG 水平没有表现出与年龄相关的显着差异,这表明需要进一步的研究来了解 ERG 在这些条件下的作用。 ERG 治疗:一种潜在的治疗方法先前的研究表明,ERG 具有抗氧化和抗炎作用,可能有益于治疗多种人类疾病,例如类风湿性关节炎。此外,ERG 补充已被证明可以减轻实验动物模型中的认知障碍和组织氧化损伤。因此,ERG 治疗可能是治疗衰弱和痴呆症的一种有前途的治疗方法。总之,ERG 是一种重要的抗氧化剂,在人类健康和衰老相关疾病中发挥着至关重要的作用。这项研究揭示了 ERG 在虚弱、痴呆和其他衰老相关疾病中的潜在意义。研究发现,虚弱和痴呆患者的 ERG 水平下降,表明这种抗氧化剂的下降可能会导致这些疾病的进展。需要进一步的研究来更好地了解...
释放 NMN 的潜力:NAD+ 的关键
烟酰胺单核苷酸(NMN)是一种分子,近年来作为一种潜在的抗衰老补充剂在科学界和公众中受到了广泛的关注。这是因为 NMN 已被证明可以激活体内已有的另一种分子,即烟酰胺腺嘌呤二核苷酸 (NAD+),这种化合物在能量代谢和衰老过程中发挥着关键作用。让我们仔细看看 NMN 背后的科学原理,为什么它被认为是一种科学上可靠且稳定的 NAD+ 激活剂,以及为什么随着年龄的增长,保持足够水平的这种分子如此重要。 NAD+——终极辅酶 首先,了解 NAD+ 是什么以及它为何重要非常重要。 NAD+ 是一种存在于体内所有活细胞中的辅酶,参与多种代谢反应。您可以将辅酶视为辅助分子,帮助细胞执行各种重要功能。 NAD+ 最重要的作用之一是细胞的能量代谢,即将您吃的食物转化为细胞可以使用的能量的过程。 NAD+ 与细胞内的酶协同作用,帮助分解食物并将其转化为能量。 NAD+ 产生能量的方式之一是充当转运分子(某种穿梭机),将高能电子运输到细胞中的线粒体。线粒体是微小的细胞内细胞器,通常被称为细胞的动力室。一旦被传输,这些电子就会被用来为细胞产生 ATP(三磷酸腺苷)形式的能量。 这个过程对于保持身体平稳运转至关重要,因为如果没有足够的 NAD+,您的细胞就无法产生足够的能量,从而导致疲劳和许多其他问题。 NAD+ 还具有另一个重要作用,即一种强大的抗氧化剂,有助于保护您的细胞免受自由基等有害分子造成的损害,自由基是正常新陈代谢的副产品,也可能来自暴露于 X 射线等物质,吸烟、空气污染、工业化学品和臭氧。 NMN - NAD+ 的前体 这就是NMN的用武之地。NMN是NAD+的前体,这意味着它可以在体内转化为NAD+。这一点很重要,因为随着年龄的增长,您的身体产生的 NAD+ 会减少,这会导致能量代谢下降并增加患年龄相关疾病的风险。一旦到了中年,您的 NAD+ 水平大约是年轻时的一半。事实上,一些科学家将衰老本身描述为一种级联故障,是由人体 NAD+ 产量减少引发的,导致易受影响的组织和器官出现问题。 动物研究也显示 NMN 具有抗衰老作用。例如,研究表明,与未补充 NMN...
瑜伽是优雅变老的关键吗?
它被称为一种宗教、一种实践和世界上最古老的锻炼形式。现在学术界正在研究它的抗衰老能力。瑜伽这门古老学科早在公元前 3300 年就开始流行,随着学者们寻找优雅衰老的关键,瑜伽这一古老学科正在重新成为研究焦点。根据《老年医学与研究进展》杂志最近的一项研究,新的研究正在采取更严格的方法来研究瑜伽的积极影响,通过进行严格的分析,包括更大的样本量和更好设计的工程研究。总的来说,这些研究表明瑜伽对细胞衰老、活动能力、平衡、心理健康和认知能力下降具有积极影响——简而言之,它可以减缓所有导致衰老如此不舒服、具有破坏性和致命性的因素。 瑜伽:简短入门 瑜伽是起源于古印度的一组身体、心理和精神练习。这些练习的目的是让心灵平静并认识到超然意识的好处。印度教、佛教和耆那教都有传统形式的瑜伽,尽管其确切起源尚不清楚。虽然瑜伽起源于东方,但如今,瑜伽已被世界各地不同背景的人们所接受和练习。瑜伽在高龄人群和行动不便的人群中越来越受欢迎,因为大部分瑜伽可以在坐姿或斜躺位置进行,对力量的要求最低,时间要求也最低,对设备或设备的要求几乎为零。空间。瑜伽之所以受欢迎,还因为练习瑜伽的人说它有很多好处。瑜伽自我报告的好处包括增加灵活性、增加肌肉力量、改善肌张力、改善呼吸、增加能量、提高活力、防止受伤、减肥、维持平衡的新陈代谢等等。 瑜伽对抗衰老过程 在今年夏天发表的一项研究中,Madhivanan 等人引用了最近的研究,该研究支持瑜伽可以对抗衰老过程的假设。其中一项研究发现,为期 12 周的课程(包括经典瑜伽姿势、呼吸练习和冥想)与细胞衰老生物标志物水平的积极变化相关,其中包括 8-OH2dG(DNA 损伤的产物)。其他积极的变化包括氧化应激标记物和端粒的改善,端粒是随着每次细胞复制而缩短的细胞块。研究还描述了长期瑜伽对大脑前额叶和后皮质之间连接的影响,这会影响工作记忆、空间注意力和决策。这些研究引用的证据表明,练习瑜伽至少八年的老年女性比那些没有参加瑜伽的女性拥有更好的功能性大脑连接。另一项研究发现,为期 90 天的瑜伽和冥想静修与脑源性神经营养因子、下丘脑-垂体轴活动的减少以及总体炎症活动较低的 IL-10 指标的增加和 IL-12 指标的减少有关,这与与过早衰老。 三个月瑜伽和冥想静修的结果 Cahn 等人在 2017 年发表在《人类神经科学前沿》上的一项研究中。描述了参与者三个月瑜伽和冥想静修的结果。每个人在活动前后都接受了各种心理测量、脑源性神经营养因子(BDNF)、昼夜唾液皮质醇水平以及促炎和抗炎细胞因子的评估。 作者写道:“参与静修活动被发现与自我报告的焦虑和抑郁的减少以及正念的增加有关。”他补充说,静修活动还有许多其他抗衰老的好处,包括: 血浆 BDNF 水平增加,皮质醇觉醒反应 (CAR) 强度增加。 BDNF 水平的标准化变化与静修前和静修后的 BSI-18 焦虑评分呈负相关,因此焦虑评分较高的人往往在静修前和静修后表现出较小的血浆 BDNF 水平增加。 血浆中抗炎细胞因子白细胞介素 10 的水平升高,促炎细胞因子白细胞介素 12 的水平下降。 与最初的假设相反,其他促炎细胞因子的血浆水平,包括干扰素 γ...
小檗碱如何对抗氧化应激、炎症和糖尿病
小檗碱是一种天然植物化合物,存在于多种植物中,包括俄勒冈葡萄、黄柏、白屈菜、欧洲小檗、白毛茛和黄连等。这种化合物属于生物碱类别,在传统中药和印度阿育吠陀医学中作为止泻剂和抗感染剂具有长期且备受推崇的用途,并且还被用作亮黄色染料的来源。羊毛、皮革和木材。生物碱作为一种化学基团非常有趣,包含大量化合物,所有这些化合物的结构组成中都至少有一个氮原子。其中许多含氮生物碱对人体具有很强的生物作用,已成为许多有益药物,包括强效阿片类止痛药吗啡和白血病化疗药物长春新碱。这些生物碱化合物对医学研究如此有吸引力的特性之一是它们在酸性条件下是水溶性的,在中性或碱性条件下是脂溶性的,这使得它们能够在更中性的条件下真正穿过细胞膜形式。 当然,人们对生物碱重新产生的兴趣包括小檗碱,每年都有数百项关于这种化合物的新研究出现在科学期刊上。小檗碱最常研究的特性之一是其对心血管和代谢疾病的治疗作用,因为这些疾病是全球死亡的主要原因,迫切需要新的治疗药物。 氧化应激、炎症和糖尿病的发展小檗碱最有前途的治疗用途之一是它对氧化应激的影响,氧化应激是破坏性自由基的产生与身体用抗氧化剂中和这些自由基的能力之间发生的不平衡。自由基是新陈代谢的天然副产品,当氧原子分裂成具有不成对电子的单个原子时产生。但由于这些自由基不喜欢保持不配对状态,因此它们不断地清除身体,寻找其他电子来配对。 在清除其他电子的过程中,这些自由基通过氧化过程有效地“窃取”电子,从而对蛋白质、细胞膜甚至 DNA 本身造成损害。这种氧化应激过程在多种疾病过程的发展中发挥着重要作用,其中包括心血管疾病、糖尿病、癌症、中风、神经退行性疾病(如痴呆)和慢性炎症。除了这些清除自由基造成的损害外,饮食中酸败脂肪(主要以工业食用油的形式)的消耗以及抗氧化状态的缺乏也会引发和传播这种氧化损害。 尽管 2 型糖尿病发生的确切机制尚不完全清楚,但现在人们清楚地认识到,氧化应激在其发展中发挥着重要作用,主要是通过产生有毒的活性氧,如超氧阴离子和过氧化氢。这些化合物被认为会直接损害胰腺中产生胰岛素的特殊胰岛细胞。 氧化应激和小檗碱糖尿病的发生与烟酰胺腺嘌呤二核苷酸磷酸(NADPH)氧化酶的激活密切相关,这是一种存在于细胞膜中的酶家族,其功能是催化超氧化物自由基(称为超氧化物)的产生。这些超氧化物除其他作用外,还可以在需要时消灭各种病毒和细菌病原体,从而保护身体。通常,这些 NADPH 氧化酶在静息细胞中处于休眠状态,但如果过度激活,则会产生破坏性水平的活性氧 (ROS)。在血管细胞中,活性氧失衡会导致高血压、心肌梗塞、动脉粥样硬化(动脉壁脂肪斑块积聚)和中风。 大量的动物模型研究表明小檗碱具有强大的抗氧化活性。小檗碱通过多种不同途径减少氧化应激,包括直接清除超氧自由基。小檗碱还直接抑制 NADPH 氧化酶的表达,如上所述,NADPH 氧化酶是活性氧的关键起源之一。 炎症、肥胖和小檗碱 炎症还通过多种复杂的化学途径直接参与 2 型糖尿病的发展,这些化学途径导致高炎症细胞因子的产生,最终导致胰岛素抵抗增加和进一步的胰岛细胞功能障碍。炎症的发展和氧化应激之间存在非常密切的关联,还需要强调的是,小檗碱在抑制炎症中的作用是一个非常复杂的作用,涉及与其抗氧化途径重叠的多种途径。这些重叠途径之一涉及 AMPK(腺苷单磷酸激活蛋白激酶)。许多研究人员认为,正是小檗碱对 AMPK 通路的影响解释了它对人类健康的大部分影响。 AMPK 充当一种中央“控制开关”,有助于调节身体产生和使用的能量数量。当这些多个 AMPK 调节途径出现功能障碍并且 AMPK 关闭时,就会导致血糖和血脂(脂肪)异常,从而导致糖尿病甚至代谢综合征,这是腹部脂肪堆积增加和脂肪堆积增加的危险组合。除了血糖和血脂升高之外,血压也会升高。 AMPK 激活也已被证明可以真正减少衰老。 只有少数已知的化合物可以激活 AMPK,包括常用的糖尿病药物二甲双胍。小檗碱也是这些化合物之一。事实上,小檗碱激活 AMPK 的程度与二甲双胍相似。 小檗碱不仅能激活 AMPK,还能增加糖酵解(将葡萄糖(糖)转化为能量的代谢途径),并导致肝脏中糖异生(新葡萄糖的产生)减少。同样的机制也被认为是小檗碱对减肥和抗肥胖作用的积极作用的基础。小檗碱不仅已成功用于治疗小鼠实验诱发的 2 型糖尿病,而且还用于治疗 2 型糖尿病的人体试验。有趣的是,小檗碱的抗糖尿病特性似乎部分归因于它对人体肠道微生物组的影响,促进肠道微生物平衡。 总之,小檗碱是一种天然植物源化合物,具有有效的抗氧化和抗衰老作用,并通过多种生物化学途径发挥作用,改善自由基的破坏作用,抑制炎症并调节葡萄糖的产生。通过这些相同的机制,小檗碱还可以对减肥发挥积极作用,并有助于调节血糖。虽然小檗碱超出了本文的讨论范围,但它在抑制某些类型的癌症方面也显示出了巨大的希望。 当然,任何想要以自然的方式获得抗衰老、抗炎和抗肥胖益处的人都应该考虑这种强效补充剂。您可以在此处找到有关我们优质小檗碱补充剂的完整信息,该补充剂特别采用胡椒碱(源自黑胡椒)配制,以增加吸收率并实现最大生物利用度。 ...
细胞衰老和老化 - 你能做什么
许多人对“衰老”这个词有些熟悉,并将其视为衰老的代名词。毕竟,这个词的词根是“sen-”,意思是“老”,也是“senile”这个词的词根,当然意味着老年的特征。但当生物学家谈论细胞衰老时,他们所说的并不完全是人们通常认为的衰老过程。根据组织类型的不同,体内细胞的存活时间也不同。白细胞的寿命约为 13 天,而红细胞的寿命为 120 天。脂肪细胞的寿命约为 8 年,肠道细胞(不包括内壁)的寿命约为 16 年。 当身体细胞到达其自然生命的终点时,它们会通过称为细胞凋亡(称为“a-pop-TOE-sis”)的过程进行预先编程的死亡,该过程的设计目的是不损害附近的任何细胞。或者细胞可能还年轻或处于中年,并以某种方式受损。很多时候,这种损伤可以被修复,细胞恢复其正常功能。如果损伤太严重,细胞会再次发生凋亡并被破坏。 正常情况下,细胞会不断分裂,既可以替换死亡的细胞,也可以帮助修复,例如生长新的皮肤细胞来闭合伤口。有时,当细胞 DNA 受损时,这些细胞就会癌变并不受控制地增殖。 了解细胞衰老细胞对损伤做出反应的另一种方式是衰老,这种损伤不会严重到引发细胞凋亡。这意味着它们不会陷入失控的增殖,而是简单地停止分裂,正常的细胞周期结束。许多科学家认为,这种进入衰老状态的能力是身体试图防止这些受损细胞癌变的一种方式。 尽管这些衰老细胞没有活跃分裂,但它们无论如何也没有死亡。衰老细胞的代谢仍然非常活跃,分泌一系列蛋白质和其他分子,称为SASP(衰老相关分泌表型),可引起炎症。通过这种方式,衰老细胞可以向免疫细胞发出信号,帮助清除损伤并帮助组织修复。到目前为止,这看起来是一件好事。但即使 SASP 确实有助于组织修复,但该阵列中的一些蛋白质和分子可能会产生有害影响。随着年龄的增长,衰老细胞开始在体内积累,包括大脑。这些衰老细胞都会产生 SASP 炎症分子和蛋白质,它们实际上会加速衰老本身,并使心脏病和阿尔茨海默氏症等与年龄相关的疾病恶化。另外,持续接触 SASP 实际上会导致健康细胞衰老。 清除体内的衰老细胞 如果这些衰老细胞以及它们产生的有毒炎症 SASP 蛋白和分子能够从体内清除,结果会怎样呢?已经证明,在神经退行性疾病小鼠模型中,清除衰老细胞可以改善这些动物的大脑功能。 但当时不知道的是:从体内清除衰老细胞是否有助于缓解正常衰老带来的大脑衰老和认知能力下降?由梅奥诊所罗伯特和阿琳科戈德衰老中心的科学家牵头的最新研究发表在 2021 年 1 月 21 日的《衰老细胞》杂志上,试图回答这个问题。研究人员再次转向小鼠模型来试图回答这个问题。研究小组使用了转基因小鼠。这些小鼠经过专门培育,作为医学研究的一部分,并将“外来”DNA 插入小鼠受精卵的细胞核中。当小鼠发育时,外源DNA就成为每个细胞的一部分。这些特殊培育的小鼠使研究小组能够使用一种药物选择性杀死表达P16ink4a的细胞,P16ink4a是一种参与细胞周期调节的蛋白质,并且减缓细胞分裂强>。 随着生物体变老,P16ink4a 蛋白的表达增加。这有助于身体减少干细胞的增殖,从而降低癌症风险,但同时使身体容易受到 SASP 蛋白和这些衰老细胞产生的其他分子的影响。由于这种方法不能保证消灭所有衰老细胞,研究人员还使用了一种组合药物混合物来靶向小鼠体内剩余的衰老细胞。研究人员使用了几组老年小鼠(25 至 29 个月)以及一组年轻小鼠作为比较。 结果非常明确:去除老年小鼠体内和大脑中的衰老细胞可以减轻与年龄相关的认知障碍,特别是空间记忆功能障碍。研究结果还显示,海马体神经元中的衰老标志物有所减少,海马体是大脑中与记忆和认知特别相关的部分,并且随着年龄的增长而逐渐恶化。 衰老细胞的清除还显着减少了脑炎症标志物,而脑炎症标志物显然与年龄相关的认知障碍有关。尽管作者强调,目前尚不完全清楚细胞衰老如何影响大脑衰老,但他们的研究结果明确表明,针对清除衰老细胞的疗法为衰老大脑的复兴和改善记忆提供了一种有希望的方法。在老年人中。 NAD 和细胞衰老 ...