Epigenetic Clocks as Age Predictors: Their History, Strengths, and Limitations

Epigenetic Clocks as Age Predictors: Their History, Strengths, and Limitations

We know only too well that old age is the main risk factor for cancer, cardiovascular disease, and neurodegeneration. Frustratingly, advances in aging research were delayed for many years due to the poor reliability of tools used in predicting the rate of patients’ biological aging. To better understand the aging process and to develop interventions, the anti-aging field needed access to a more effective system for measuring biological age. 


Enter epigenetic clocks. These age predictors, based on DNA methylation (DNAm), have come to prominence over the last decade or so, paving the way for more quantitative studies. New clocks and applications, including forensics, are announced frequently. They represent a genuine breakthrough, even if the precise aspects of aging captured by epigenetic clocks remain unclear. Let’s look into a few of the epigenetic clocks available today, and summarize their strengths and weaknesses.

So, DNAm has emerged as one of the most efficient biomarkers to predict biological age. Epigenetic clocks (also known as DNAm age predictors) are developed using CpGs (DNA regions) that change with age. Most clocks are built using something called a penalized regression model, which helps researchers to select relevant groups of CpGs. The clocks are then used to estimate chronological age based on the percentage methylation at key CpG sites. Improvements and new discoveries are coming thick and fast.

Age Acceleration

 

Let’s start by looking at age acceleration, which refers to the difference between epigenetic age (eAge) and chronological age (chAge). This is associated with several age-related conditions. For example, patients with obesity, Down's syndrome, Huntington's disease, Sotos syndrome, and Werner syndrome tend to show increased age acceleration. eAge acceleration is also linked to physical and cognitive fitness. Variation in epigenetic aging rates varies greatly depending on sex and ethnic background. 


People who are vitamin D-sufficient have a lower eAge acceleration and lengthier leukocyte telomeres (LTL). Smoking has been connected to an elevated eAge in airway cells and lung tissue (by 4.9 and 4.3 years respectively). In addition, researchers have established that smoking during pregnancy might have a detrimental effect on eAge in offspring. New findings are revealed all the time, but it’s clear that epigenetic clocks have proven themselves to be accurate at predicting biological age. 

 

The Early Days of Clock Design


The first epigenetic clocks included relatively few CpG sites and samples in their training data sets, compared to later versions. Early researchers created a clock from 68 samples (34 twin pairs) that predicted age in saliva with an average accuracy of 5.2 years. After the initial studies, epigenetic clocks grew in complexity in terms of the number of samples, tissues, and CpGs implemented.  

The first multi-tissue age predictor — the Horvath or Pan-Tissue clock — used 353 CpGs and had a mean error of 3.6 years, unprecedented at the time. The clock was developed using 8000 samples from 82 studies, including more than 50 healthy tissues. The impressive size of the training data represented a new benchmark in clock design. The Horvath clock quickly gained a large fanbase in the scientific community due to its capacity to predict age in multiple tissues using minimal CpGs. 

Design Evolution

The Horvath clock was also used to establish that tissues may age at different rates. For example, it seems that brain tissue ages slower relative to other tissues in the body. However, the clock did not work consistently on cultured cells, particularly fibroblasts. As a result, Horvath set out to develop an epigenetic clock that predicted the age of human fibroblasts, buccal cells, endothelial cells, keratinocytes, lymphoblastoid cells, blood, skin, and saliva samples. This new clock, called the skin and blood (S&B) clock, can predict both in vivo and in vitro tissues with great accuracy.


Other researchers later developed an accurate skin age predictor. Meanwhile, the Zhang clock, while primarily trained to work on blood, is capable of predicting the ages of breast, liver, adipose, and muscle tissue to the same degree of accuracy as the Horvath clock. This clock also outdoes both the Horvath and Hannum clocks when it comes to predicting blood age. It is distinguished by the size of its training data, with over 13,000 samples. 

 

Limitations and Inaccuracies


Some inaccuracies in epigenetic clocks became evident when predicting the age of younger people (under 20 years old), and the Pediatric-Buccal-Epigenetic (PedBE) clock was created to address this issue. It was aimed specifically for use in newborns to 20-year-olds. This provides a good example of how the accuracy of epigenetic clocks can be boosted — not only by targeting certain tissues, but also specific age groups. However, despite their promise, epigenetic clocks still suffer some limitations at present.

Most epigenetic clocks depend on an expensive Illumina Infinium methylation array, which makes the widespread application of eAge technology impractical in the field of new drug discovery. The Qiagen sequencing platform allows for a more cost-effective approach, but it has its own drawbacks. The use of minimized clocks in forensics is still evolving and cross-validation is missing for most clocks. Researchers have shown that both the Horvath and Hannum clocks routinely underestimate the age of older people.

 

Promise For The Future


In summary, eAge prediction is an exciting and rapidly growing new field that has already radically transformed the world of experimental gerontology. As the number and variety of epigenetic clocks increases, so too does humanity’s understanding of biological age. It is still early days, however. Although linear models are useful in predicting the eAge of individuals between the ages of 20 and 70, there is weaker accuracy outside of these ages.

Scientists are also experimenting with a range of other techniques that do not rely exclusively on DNAm data. Composite clocks such as PhenoAge and GrimAge are the first steps in that direction. 

  

 

References:

 

1. Baker, G. T., & Sprott, R. L. (1988). Biomarkers of aging. Experimental Gerontology, 23(4-5), 223– 239

2. Bacalini, M. G., Deelen, J., Pirazzini, C., De Cecco, M., Giuliani, C., Lanzarini, C., Ra-vaioli, F., Marasco, E., Van Heemst, D., Suchiman, H. E. D., Slieker, R., Giampieri, E., Recchioni, R., Marcheselli, F., Salvioli, S., Vitale, G., Olivieri, F., Spijkerman, A. M., DollCrossed, M. E., … Garagnani, P. (2017). Systemic age-associated DNA hypermethylation of ELOVL2 Gene. In vivo and in vitro evidences of a cell replication process. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 72(8), 1015– 1023.

3. Arneson, A., Haghani, A., Thompson, M. J., Pellegrini, M., Kwon, S. B., Vu, H., Yao, M., Li, C. Z., Lu, A. T., Barnes, B., Hansen, K. D., Zhou, W., Breeze, C. E., Ernst, J., & Horvath, S. (2021). A mammalian methylation array for profiling methylation levels at conserved sequences. bioRxiv, 2021.01.07.425637.

4. Aliferi, A., Ballard, D., Gallidabino, M. D., Thurtle, H., Barron, L., & Syndercombe Court, D. (2018). DNA methylation-based age prediction using massively parallel sequencing data and multiple machine learning models. Forensic Science International: Genetics, 37, 215– 226.

5. Al Muftah, W. A., Al-Shafai, M., Zaghlool, S. B., Visconti, A., Tsai, P.-C., Kumar, P., Spector, T., Bell, J., Falchi, M., & Suhre, K. (2016). Epigenetic associations of type 2 diabetes and BMI in an Arab population. Clinical Epigenetics, 8(1).

6. Belsky, D. W., Caspi, A., Houts, R., Cohen, H. J., Corcoran, D. L., Danese, A., Harrington, H., Israel, S., Levine, M. E., Schaefer, J. D., Sugden, K., Williams, B., Yashin, A. I., Poulton, R., & Moffitt, T. E. (2015). Quantification of biological aging in young adults. Proceedings of the National Academy of Sciences of the United States of America, 112(30), E4104– E4110.

7. Bergsma, T., & Rogaeva, E. (2020). DNA methylation clocks and their predictive capacity for aging phenotypes and healthspan. Neuroscience Insights, 15, 263310552094222.

8. Binder, A. M., Corvalan, C., Mericq, V., Pereira, A., Santos, J. L., Horvath, S., Shepherd, J., & Michels, K. B. (2018). Faster ticking rate of the epigenetic clock is associated with faster pubertal development in girls. Epigenetics, 13(1), 85– 94. 

9. Bocklandt, S., Lin, W., Sehl, M. E., Sánchez, F. J., Sinsheimer, J. S., Horvath, S., & Vilain, E. (2011). Epigenetic predictor of age. PLoS One, 6(6), e14821.

10. Breitling, L. P., Saum, K.-U., Perna, L., Schöttker, B., Holleczek, B., & Brenner, H. (2016). Frailty is associated with the epigenetic clock but not with telomere length in a German cohort. Clinical Epigenetics, 8(1), 1– 8.

40s and 60s Health Academic Performance Active Aging Active Lifestyle Active Living adenosine triphosphate Adoptive cell therapy Aerobic Health Age Prevention Age Reversal Age-Associated Muscle Decline Age-Defying Secrets Age-Defying Strategies Age-Defying Tips Age-related CAR-T failure Age-Related Changes Age-Related Decline Age-Related Diseases Age-Related Myths Age-related Weight Gain Age-specific Nutrition Ageless Beauty Ageless Living Ageless Memory Aging and cancer Aging and Disease Aging and Health Aging and longevity Aging and Nutrition Aging Atlas aging eggs Aging Gracefully Aging Process Aging Research Aging Supplements AI stem cells Alternative Polyadenylation Alzheimer's Alzheimer's Prevention Alzheimer's treatment Alzheimer’s disease AMP-activated protein kinase AMPK anti-aging Anti-Aging Diet Anti-Aging for the Brain Anti-Aging Lifestyle Anti-Aging Research Anti-Aging Science Anti-Aging Strategies Anti-Aging Therapies Anti-Aging Tips Anti-inflammatory diet Anti-Inflammatory Foods Anti-Inflammatory Strategies AntiAging Antioxidant Supplements Antioxidants apoptosis Arterial Stiffness Athletic Training ATP Autophagie autophagy Balanced Diet Balanced Training BCAAs Behavior Modulation Berberine Bioactive Compounds Bioavailability Biological Aging biological clocks Biological Mysteries Biomarkers Biomedical Advances Biomedical engineering Black Pepper Extract blood cell counts Blood Sugar Management blood sugar regulator Blueberries and Grapes Bone Health Brain Boosting Tips Brain Exercises Brain Fitness Brain Function Brain Function Enhancers Brain Health Brain Nutrition Brain Science Brain Supplements Brain Training Brain-Boosting Diet BRCA2 Breakthrough Treatments CaffeineProsAndCons Caloric Restriction Cancer Cancer and Inflammation Cancer Prevention Cancer Research Cancer Therapy Cancer treatment CAR-T therapy CAR-T therapy for older patients CardiacRehabilitation Cardiovascular Health CardiovascularDisease CardiovascularEffects CD38 enzyme Cellular Aging Cellular energy Cellular Growth Cellular Health Cellular health optimization Cellular metabolism Cellular Rejuvenation Cellular Renewal Cellular Senescence Cerebral Blood Flow chAge Chimeric antigen receptor Cholesterol and Cancer Cholesterol Reduction Cholesterol Synthesis Chronic Disease Prevention Chronic Diseases Chronic Inflammation ChronicInflammation ChronicStress chronological age Circadian Rhythm Clinical Trials CoffeeHealth cognition Cognitive Aging Cognitive Enhancement cognitive function Cognitive Health Cognitive Longevity Cognitive Renewal Cognitive Training Cognitive Wellness Continuous Growth coptis chinensis Cork Tree Cortex phellodendri Daily Step Count Dementia Prevention Diabetes Diabetes Management Diabetes Prevention Diabetes Risk Factors Diet and Cancer Diet Tips Dietary Choices Dietary Guidelines Dietary Moderation Benefits Dietary Supplements DietaryResearch Digestive Wellness Digital Learning Disease Prevention DNA methylation DNA Repair DNA Repair and Aging DNA Secrets DNAm Drug Delivery Drug Development Duke-NUS Discoveries eAge Educational Research Emergency Workers Fitness Emotional Wellness Endothelial dysfunction Endurance Training Energy Metabolism epigenetic age epigenetic alterations Epigenetic Clock epigenetische Alter Epigenetische Uhr Ergothioneine Ergothioneine Benefits Evergreen Health Exercise and Aging Exercise and Health Exercise and Immunity Exercise and Inflammation Exercise Physiology Exercise Research Exercise Science Exercise Tips fasting FAXDC2 Enzyme female fertility ferulic acid Fitness and Wellness Fitness in Aging Fitness Recovery Fitness Risks Fitness Tips Focus and Concentration Focus and Recall Focus Enhancement Food Science Functional Foods Functional hyperemia Future of Longevity Future of Medicine gene expression Gene Expression and Longevity Gene Therapy GeneActivity Genetic Aging Genetic Blueprint Genetic Code Genetic Mutations Genetic Research Genexpression genomic instability Genomic Technologies genomics Gerontology Research geroprotection gesundes Altern GLTD Research gluconeogenesis glucose metabolism glycogenolysis Glycolysis Golden Years Golden Years Wellness Goldthread Grape Seed Extract grey hair causes Gut Bacteria Gut Health Gut Microbiome hallmarks of aging Harvard Study Insights Healing Mechanisms Health and Fitness Health and Longevity Health and Wellness Health and Wellness Tips Health Benefits Health Innovation Health Monitoring Health Promotion Health Research Health Risks of Exercise Health Risks of Sitting Health Science Health Supplements HealthAndWellbeing Healthcare Technology Healthspan Extension healthy aging Healthy Aging Tips Healthy Eating Healthy Lifestyle Healthy Living HealthyAging HealthyLifestyle heart health Heart Health in 40s HeartDiseasePrevention HeartHealth Herbal Remedies Hericium Erinaceus Herz Gesundheit high fat ketogenic diet High-Intensity Workouts Holistic Health Holistic Wellness HolisticWellness Hormonal Balance Horvath clock Human longevity Human Trials immune system Immune System and Aging Immune System Health Immunotherapy Improving CAR-T outcomes Inflamm-aging Inflammation Inflammation Insights Inflammation Management Inflammatory Diseases Innovative medical technology Insulin Resistance Insulin/IGF-1 Signaling intercellular communication intermittent fasting keto diet ketogenic diet ketones ketones bodies Kognitive Gesundheit Krebs cycle L-Ergothioneine Life Stages and Wellness LifeExtension Lifelong Clarity Lifelong Learning Lifespan Extension Lifespan Research Lifestyle and Wellness Lifestyle Changes Lifestyle Tips LifestyleChanges Lion's Mane Liposomal NMN Liposomal Technology Liposome Benefits Liposome Manufacturing Liposomes live longer living robots Longevity longevity gene Longevity Research Longevity Secrets Longevity Supplements loss of resilience Love and Longevity matsutake MCI Medical Research Meditation Mediterranean Diet Memory Aids Memory Boosters Memory Consolidation Memory Encoding Memory Enhancement Memory Improvement Memory Mastery Memory Palace Memory Retention Memory Strategies Memory Techniques Memory Tips Memory Training Menschliche Langlebigkeit Mental Agility Mental Fitness mental health Mental Resilience Mental Vitality Mental Wellbeing Mental Wellness Metabolic Changes Metabolic Disorders Metabolic dysfunction metabolic health Metabolic optimization cancer treatment Metabolic Pathways Metabolic Pathways in Cancer Metabolic Syndrome Metabolic Syndrome Management Metabolism in Aging Metabolite Supplements methionine Methylglyoxal Microbiome Research Microcirculation Midlife Health mild cognitive impairment Mind-Body Connection Mind-Gut Connection MindBodyMedicine Mindful Aging Mindful Eating Mindful Organization Mindfulness Mindfulness and Meditation Mitochondrial Health Mitochondrial optimization Mitophagy Mnemonics Moderate vs Vigorous Exercise Modern Aging Solutions Modern Lifestyle Modern Medicine Modern Science Molecular Biology Molecular Mechanisms Molecular medicine mTor activation Multi-Omics Profiling Muscle Endurance Muscle Mass Preservation NAD+ NAD+ (nicotinamide adenine dinucleotide) NAD+ and immune function NAD+ Benefits NAD+ cancer therapy NAD+ supplementation nadh NAMPT Nanotechnology Natural Compounds Natural Elixirs Natural Health Natural Rejuvenation Natural Remedies Natural Supplements Natural Weight Solutions Nature Cancer Neural Nourishment Neurodegeneration Neurodegeneration Insights Neurodegeneration Prevention Neurodegenerative Conditions Neurodegenerative Disease Prevention Neurodegenerative diseases Neurodegenerative Disorders Neuroinflammation Neurological research Neuroplasticity neuroprotection Neurovascular Coupling Neurovascular Unit Nicotinamide adenine dinucleotide nmn NMN (nicotinamide mononucleotide) NMN Supplements NR (nicotinamide riboside) Nutraceuticals Nutriop Longevity Nutriop Longevity Benefits Nutriop Longevity Products Nutriop Longevity Supplements Nutriop Longevity® Resveratrol PLUS Nutriop Supplements Nutriop Wellness NutriopLongevity Nutriop® Life Nutrition Nutrition for Seniors Nutrition Research Nutritional Guidance Nutritional Science Nutritional Strategies Nutritional Supplements Nutritional Support Omega-3 Fatty Acids Oncology Oncology Innovations oocyte quality Optimal Step Count Oral Health Oxford Academic Study Oxidative stress Oxygen Efficiency P16ink4a Parkinson's therapy Personal Transformation Personalized Exercise Plans Personalized Health Strategies Personalized Medicine Personalized Nutrition Pharmaceutical Development Phellodendron Physical Activity Physical Activity and Brain Phytoalexins Piperine Plant Metabolites Plant-based compounds Plant-Based Diet Polygenic Risk Score (PRS) Positive Thinking Premium supplements Preventative Strategies Preventive Health Preventive Healthcare Probiotics Processed Foods Protein aggregation pterostilbene Quercetin Radiant Health Recall Enhancement Reducing Sitting Time Regenerative Medicine Relationships and Health RelaxationTechniques Reproductive Aging Resilience Resilience Techniques Resveratrol rhizoma coptis chinensis rice bran RING-Bait SASP Science Science of Aging Science-backed supplementation Scientific Advancements Scientific Breakthrough Sedentary Behavior Sedentary Lifestyle Self-Improvement Senior Fitness Senior Health Senior Wellness Senior Wellness Strategies Single-Cell RNA Sequencing SIRT1 sirtuins Sleep and Cognition Sleep and Health Sleep and Metabolism sleep cycles sleep duration Sleep Research sleep stages Spermidin spermidine Step Count Benefits Stoffwechselgesundheit Stress and Weight Stress Management StressAndAging StressManagement StressReduction Student Health Supplement Benefits Supplements Swiss cancer research breakthrough T cell exhaustion Targeted Therapies Targeted Therapy Tauopathy Telomeres Timeless Living Timeless Vitality Transcriptomics Tricarboxylic acid cycle Tricholoma matsutake Tumor Suppression Type 2 Diabetes Prevention University of Lausanne research Urolithin A Vibrant Aging Vigorous Exercise Vitality VO2 Max Fitness Walking for Health Weight Loss for Elderly Weight Management Weizenkeimextrakt Wellness Wellness and Vitality Wellness in Retirement Wellness Journey Wellness Strategies Wellness Tips wheat germ extract Whole Foods Whole Grains Wnt Signaling Wnt Signaling Pathway Workout Safety xenobots yoga Youthful Vitality Zelluläre Seneszenz
Back to blog

Leave a comment

Please note, comments need to be approved before they are published.